Personal remittances, paid (current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 419,534,482 -3.37% 63
Albania Albania 205,314,881 +15.2% 76
Argentina Argentina 569,441,326 +9.61% 55
Armenia Armenia 526,486,132 -1.76% 58
Antigua & Barbuda Antigua & Barbuda 48,796,083 -13.8% 94
Australia Australia 12,010,389,798 +16.4% 15
Austria Austria 8,936,099,582 +9.93% 21
Azerbaijan Azerbaijan 663,698,000 -1.64% 47
Belgium Belgium 13,213,597,803 +24.5% 10
Bangladesh Bangladesh 168,366,925 +13.2% 80
Bulgaria Bulgaria 422,870,000 +143% 62
Bahrain Bahrain 2,659,574,468 -0.14% 31
Bahamas Bahamas 320,921,379 +8.55% 68
Bosnia & Herzegovina Bosnia & Herzegovina 164,775,652 +20.4% 81
Belarus Belarus 228,697,861 +101% 74
Belize Belize 47,224,551 +16% 96
Brazil Brazil 2,090,043,730 -8.59% 32
Bhutan Bhutan 74,536,653 -4.2% 90
Canada Canada 13,119,419,447 -3.81% 11
Switzerland Switzerland 37,794,498,530 +2.04% 3
Chile Chile 690,690,250 +1.32% 45
China China 20,018,921,503 -1.13% 5
Colombia Colombia 406,846,514 -6.11% 64
Cape Verde Cape Verde 36,312,591 +21.8% 97
Costa Rica Costa Rica 647,344,642 +20.3% 48
Czechia Czechia 5,114,391,975 -5.88% 25
Germany Germany 23,662,387,575 +5.64% 4
Djibouti Djibouti 974,595 -74.6% 108
Dominica Dominica 10,009,164 -17.9% 104
Denmark Denmark 4,766,577,059 +10.4% 26
Dominican Republic Dominican Republic 1,172,500,000 +10.5% 41
Ecuador Ecuador 633,389,383 -10.4% 49
Spain Spain 588,213,669 +4.42% 52
Estonia Estonia 264,609,461 -10.4% 72
Finland Finland 1,553,352,318 +2.58% 36
France France 19,671,612,649 -0.833% 6
United Kingdom United Kingdom 12,271,592,596 +6.06% 13
Georgia Georgia 312,756,323 -3.61% 70
Gambia Gambia 9,775,890 -72% 105
Greece Greece 3,166,102,430 +6.13% 29
Grenada Grenada 54,711,707 -0.32% 92
Guatemala Guatemala 34,242,900 +21% 98
Hong Kong SAR China Hong Kong SAR China 1,082,018,168 +11.9% 42
Honduras Honduras 346,096,593 +2.03% 67
Croatia Croatia 1,966,100,773 +52.4% 33
Hungary Hungary 1,568,292,261 +0.42% 35
Indonesia Indonesia 11,128,256,369 +13.8% 17
India India 12,072,300,700 -2.32% 14
Iceland Iceland 563,373,014 +25% 57
Israel Israel 1,363,800,000 -50% 38
Italy Italy 12,361,405,831 +1.1% 12
Jamaica Jamaica 312,990,456 -9.14% 69
Japan Japan 6,071,789,021 +2.3% 24
Kazakhstan Kazakhstan 2,756,431,624 -1.86% 30
Cambodia Cambodia 375,772,691 -12.6% 65
St. Kitts & Nevis St. Kitts & Nevis 27,070,703 +6.84% 100
South Korea South Korea 10,228,700,000 +5.39% 19
Kuwait Kuwait 14,168,984,683 +11.7% 9
St. Lucia St. Lucia 14,446,123 +5.04% 103
Lesotho Lesotho 3,043,551 +0.729% 107
Lithuania Lithuania 676,678,041 +24.1% 46
Luxembourg Luxembourg 17,633,955,042 +2.26% 8
Latvia Latvia 576,778,155 +20.7% 54
Moldova Moldova 512,440,000 +13.6% 60
Maldives Maldives 622,562,741 +5.13% 50
Mexico Mexico 1,308,403,827 +21.6% 39
North Macedonia North Macedonia 24,147,739 -0.308% 101
Malta Malta 225,205,954 +12% 75
Montenegro Montenegro 196,265,022 +35.7% 78
Mozambique Mozambique 196,407,528 -1.33% 77
Malaysia Malaysia 10,842,907,209 +12.4% 18
Namibia Namibia 111,060,171 +33.7% 86
Nigeria Nigeria 92,301,298 +9.76% 87
Nicaragua Nicaragua 145,700,000 +9.55% 83
Netherlands Netherlands 17,967,697,560 +5.45% 7
Norway Norway 4,635,615,468 +1.96% 27
Nepal Nepal 63,404,725 +11.9% 91
New Zealand New Zealand 1,185,375,790 +14.6% 40
Pakistan Pakistan 352,000,000 +9.32% 66
Panama Panama 596,169,824 +11.3% 51
Philippines Philippines 268,879,630 -13.5% 71
Poland Poland 9,216,000,000 -19.8% 20
Portugal Portugal 445,337,389 +20.8% 61
Paraguay Paraguay 79,507,130 -2.28% 89
Palestinian Territories Palestinian Territories 9,330,391 0% 106
Qatar Qatar 11,512,087,912 -2.22% 16
Romania Romania 1,788,285,431 +27% 34
Russia Russia 8,270,710,000 +11.4% 22
Saudi Arabia Saudi Arabia 46,564,898,867 +20.6% 2
Solomon Islands Solomon Islands 51,778,698 -8.58% 93
El Salvador El Salvador 256,055,247 -1.73% 73
Suriname Suriname 90,144,564 -7.26% 88
Slovakia Slovakia 522,184,005 +0.175% 59
Slovenia Slovenia 567,718,015 +8.32% 56
Sweden Sweden 4,034,440,424 -0.21% 28
Thailand Thailand 8,036,554,429 +13.5% 23
Tajikistan Tajikistan 586,128,284 +86.2% 53
Timor-Leste Timor-Leste 118,507,877 -36.2% 85
Tonga Tonga 27,764,392 -5.11% 99
Trinidad & Tobago Trinidad & Tobago 150,105,444 +1.01% 82
Turkey Turkey 1,526,000,000 +53.5% 37
Ukraine Ukraine 193,000,000 +105% 79
Uruguay Uruguay 137,570,761 +1.69% 84
United States United States 98,418,000,000 +5.79% 1
Uzbekistan Uzbekistan 736,979,579 +23.9% 44
St. Vincent & Grenadines St. Vincent & Grenadines 18,388,547 +7.76% 102
Samoa Samoa 47,900,675 +47.5% 95
South Africa South Africa 993,227,783 +6.52% 43

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BM.TRF.PWKR.CD.DT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BM.TRF.PWKR.CD.DT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))