Permanent cropland (% of land area)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.34 0% 152
Angola Angola 0.254 0% 157
Albania Albania 3.22 +0.65% 62
Andorra Andorra 0.0183 0% 188
United Arab Emirates United Arab Emirates 0.581 0% 136
Argentina Argentina 0.39 0% 145
Armenia Armenia 2.15 +1.49% 80
American Samoa American Samoa 9.65 0% 30
Antigua & Barbuda Antigua & Barbuda 2.27 0% 78
Australia Australia 0.0501 0% 181
Austria Austria 0.81 -1.24% 124
Azerbaijan Azerbaijan 3.31 -0.182% 60
Burundi Burundi 13.6 0% 18
Belgium Belgium 0.787 +1.05% 126
Benin Benin 6.74 +29.5% 42
Burkina Faso Burkina Faso 2.41 +3.94% 73
Bangladesh Bangladesh 7.22 0% 40
Bulgaria Bulgaria 1.28 -6.51% 107
Bahrain Bahrain 2.53 0% 70
Bahamas Bahamas 0.3 0% 154
Bosnia & Herzegovina Bosnia & Herzegovina 2.11 0% 83
Belarus Belarus 0.443 -5.28% 140
Belize Belize 1.4 0% 105
Bolivia Bolivia 0.233 +0.428% 159
Brazil Brazil 0.928 +0.00004% 122
Barbados Barbados 2.33 0% 74
Brunei Brunei 1.14 0% 111
Bhutan Bhutan 0.157 0% 167
Botswana Botswana 0.00353 0% 196
Central African Republic Central African Republic 1.34 +2.77% 106
Canada Canada 0.0196 0% 186
Switzerland Switzerland 0.634 -0.682% 132
Chile Chile 0.749 +4.02% 128
China China 2.1 +1.73% 84
Côte d’Ivoire Côte d’Ivoire 29.1 -1.46% 5
Cameroon Cameroon 3.28 0% 61
Congo - Kinshasa Congo - Kinshasa 0.89 0% 123
Congo - Brazzaville Congo - Brazzaville 0.4 +11.7% 144
Colombia Colombia 2.22 -0.103% 79
Comoros Comoros 28.5 0% 6
Cape Verde Cape Verde 0.993 0% 118
Costa Rica Costa Rica 6.42 0% 44
Cuba Cuba 6.29 0% 45
Cayman Islands Cayman Islands 2.08 0% 85
Cyprus Cyprus 2.81 +0.228% 67
Czechia Czechia 0.627 -1.08% 133
Germany Germany 0.581 +0.504% 135
Djibouti Djibouti 0.0388 0% 184
Dominica Dominica 22.7 0% 8
Denmark Denmark 0.775 +14.8% 127
Dominican Republic Dominican Republic 7.56 +13% 38
Algeria Algeria 0.409 +3.52% 142
Ecuador Ecuador 5.5 -4.01% 49
Egypt Egypt 0.959 +0.105% 119
Eritrea Eritrea 0.0165 0% 189
Spain Spain 10.2 +0.542% 29
Estonia Estonia 0.117 +0.0468% 173
Ethiopia Ethiopia 1.82 -12.1% 92
Finland Finland 0.0165 +13.6% 190
Fiji Fiji 3.38 0% 58
France France 1.88 +0.0253% 90
Gabon Gabon 0.66 0% 131
United Kingdom United Kingdom 0.176 -7.64% 165
Georgia Georgia 1.84 0% 91
Ghana Ghana 11.9 0% 20
Guinea Guinea 5.77 +0.795% 47
Gambia Gambia 0.692 0% 130
Guinea-Bissau Guinea-Bissau 8.89 0% 32
Equatorial Guinea Equatorial Guinea 1.68 0% 97
Greece Greece 7.99 +0.0421% 35
Grenada Grenada 11.8 0% 21
Guatemala Guatemala 11 0% 24
Guam Guam 13 0% 19
Guyana Guyana 0.147 0% 169
Honduras Honduras 5.36 0% 51
Croatia Croatia 1.41 0% 104
Haiti Haiti 10.9 0% 26
Hungary Hungary 1.61 -1.65% 98
Indonesia Indonesia 14.5 +1.57% 14
India India 4.57 0% 54
Ireland Ireland 0.0145 0% 192
Iran Iran 1.17 0% 110
Iraq Iraq 1.13 +5.6% 112
Italy Italy 8.07 +10.1% 34
Jamaica Jamaica 6.28 0% 46
Jordan Jordan 0.93 +0.978% 120
Japan Japan 0.711 -1.52% 129
Kazakhstan Kazakhstan 0.0489 0% 182
Kenya Kenya 1.25 +1.17% 108
Kyrgyzstan Kyrgyzstan 0.402 +0.508% 143
Cambodia Cambodia 2.8 -1.54% 68
Kiribati Kiribati 39.5 0% 3
St. Kitts & Nevis St. Kitts & Nevis 0.385 0% 146
South Korea South Korea 2.13 +1.96% 81
Kuwait Kuwait 0.337 0% 153
Laos Laos 1.52 +18.4% 100
Lebanon Lebanon 13.7 0% 16
Liberia Liberia 2.08 0% 86
Libya Libya 0.188 0% 164
St. Lucia St. Lucia 11.3 0% 23
Sri Lanka Sri Lanka 16.2 0% 11
Lesotho Lesotho 0.132 0% 172
Lithuania Lithuania 0.573 -0.819% 137
Luxembourg Luxembourg 0.592 -2.25% 134
Latvia Latvia 0.161 +11.1% 166
Morocco Morocco 3.99 0% 57
Moldova Moldova 6.75 -1.53% 41
Madagascar Madagascar 1.03 0% 115
Maldives Maldives 3.33 0% 59
Mexico Mexico 1.5 +3.87% 101
Marshall Islands Marshall Islands 36.1 0% 4
North Macedonia North Macedonia 1.59 -2.44% 99
Mali Mali 0.24 +15.5% 158
Malta Malta 2.97 0% 66
Myanmar (Burma) Myanmar (Burma) 2.31 0% 75
Montenegro Montenegro 0.372 -9.75% 148
Mongolia Mongolia 0.00338 -1.52% 197
Northern Mariana Islands Northern Mariana Islands 0.196 0% 163
Mozambique Mozambique 0.381 0% 147
Mauritania Mauritania 0.0097 0% 194
Mauritius Mauritius 2 0% 88
Malawi Malawi 2.12 0% 82
Malaysia Malaysia 22.7 0% 7
Namibia Namibia 0.0146 0% 191
New Caledonia New Caledonia 0.204 0% 162
Niger Niger 0.0892 0% 178
Nigeria Nigeria 8.52 +0.709% 33
Nicaragua Nicaragua 2.46 0% 72
Netherlands Netherlands 1.13 +2.7% 113
Norway Norway 0.00824 0% 195
Nepal Nepal 1.01 +2.67% 116
Nauru Nauru 20 0% 9
New Zealand New Zealand 0.273 -2.7% 155
Oman Oman 0.109 +0.992% 176
Pakistan Pakistan 0.93 -2.32% 121
Panama Panama 1.45 0% 103
Peru Peru 1.78 -5.99% 94
Philippines Philippines 18.8 0% 10
Palau Palau 4.35 0% 55
Papua New Guinea Papua New Guinea 1.95 0% 89
Poland Poland 1.24 +0.00327% 109
Puerto Rico Puerto Rico 1.8 0% 93
North Korea North Korea 2.07 -0.372% 87
Portugal Portugal 9.46 +0.0264% 31
Paraguay Paraguay 0.208 -11.6% 161
French Polynesia French Polynesia 7.49 0% 39
Qatar Qatar 0.261 0% 156
Romania Romania 1.71 -1.75% 96
Russia Russia 0.109 0% 175
Rwanda Rwanda 14.2 0% 15
Saudi Arabia Saudi Arabia 0.0963 0% 177
Sudan Sudan 0.116 0% 174
Senegal Senegal 0.421 0% 141
Singapore Singapore 0.139 0% 170
Solomon Islands Solomon Islands 3.18 0% 63
Sierra Leone Sierra Leone 2.29 0% 76
El Salvador El Salvador 7.72 0% 36
San Marino San Marino 5.25 0% 52
Somalia Somalia 0.0462 0% 183
Serbia Serbia 2.46 +1.47% 71
South Sudan South Sudan 0.135 0% 171
São Tomé & Príncipe São Tomé & Príncipe 39.6 0% 2
Suriname Suriname 0.0187 -25% 187
Slovakia Slovakia 0.354 -5.56% 149
Slovenia Slovenia 2.68 +2.82% 69
Sweden Sweden 0.00982 0% 193
Eswatini Eswatini 1.05 0% 114
Seychelles Seychelles 3.04 0% 65
Syria Syria 5.63 -1.95% 48
Chad Chad 0.0302 0% 185
Togo Togo 3.13 0% 64
Thailand Thailand 10.9 0% 27
Tajikistan Tajikistan 1.72 +17.3% 95
Turkmenistan Turkmenistan 0.0847 +11.2% 179
Timor-Leste Timor-Leste 5.37 0% 50
Tonga Tonga 15.3 0% 13
Trinidad & Tobago Trinidad & Tobago 4.29 0% 56
Tunisia Tunisia 13.6 0% 17
Turkey Turkey 4.77 +2.23% 53
Tuvalu Tuvalu 60 0% 1
Tanzania Tanzania 2.28 0% 77
Uganda Uganda 11 0% 25
Ukraine Ukraine 1.47 0% 102
Uruguay Uruguay 0.223 0% 160
United States United States 0.344 +0.234% 150
Uzbekistan Uzbekistan 0.995 +4.06% 117
St. Vincent & Grenadines St. Vincent & Grenadines 7.69 0% 37
Venezuela Venezuela 0.794 0% 125
British Virgin Islands British Virgin Islands 6.67 0% 43
U.S. Virgin Islands U.S. Virgin Islands 0.571 0% 138
Vietnam Vietnam 15.7 -0.0958% 12
Vanuatu Vanuatu 10.3 0% 28
Samoa Samoa 11.4 0% 22
Yemen Yemen 0.557 0% 139
South Africa South Africa 0.34 0% 151
Zambia Zambia 0.0525 0% 180
Zimbabwe Zimbabwe 0.153 -1.13% 168

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.LND.CROP.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.LND.CROP.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))