People using safely managed drinking water services (% of population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 30 +2.46% 101
Albania Albania 70.7 +0.0428% 71
Andorra Andorra 90.6 0.00000% 46
Armenia Armenia 82.4 -0.166% 55
Austria Austria 98.9 -0.00224% 22
Azerbaijan Azerbaijan 71.6 +0.654% 70
Belgium Belgium 99.7 +0.00834% 9
Bangladesh Bangladesh 59.1 -0.0348% 80
Bulgaria Bulgaria 95.7 -0.163% 37
Bahrain Bahrain 98.9 0% 21
Bosnia & Herzegovina Bosnia & Herzegovina 87 -0.667% 52
Belarus Belarus 93.1 +0.0864% 43
Brazil Brazil 87.3 +0.709% 51
Bhutan Bhutan 73.3 +0.931% 69
Central African Republic Central African Republic 6.13 +0.699% 122
Canada Canada 99 +0.000412% 20
Switzerland Switzerland 96.7 0.00000% 33
Chile Chile 98.8 0.00000% 25
Côte d’Ivoire Côte d’Ivoire 43.9 +0.287% 95
Congo - Kinshasa Congo - Kinshasa 11.6 +1.76% 117
Colombia Colombia 73.9 +0.185% 68
Costa Rica Costa Rica 80.5 -0.0051% 58
Cyprus Cyprus 99.8 -0.00007% 8
Czechia Czechia 97.9 +0.000497% 28
Germany Germany 99.9 +0.000369% 4
Denmark Denmark 99.9 0.00000% 3
Dominican Republic Dominican Republic 44.9 +0.175% 93
Algeria Algeria 70.6 +0.0722% 72
Ecuador Ecuador 67.1 +0.0665% 74
Spain Spain 99.6 +0.00286% 14
Estonia Estonia 97 +0.011% 31
Ethiopia Ethiopia 13.2 +2.77% 116
Finland Finland 99.6 +0.00213% 13
Fiji Fiji 41.9 +0.302% 97
France France 99.7 +0.0597% 12
United Kingdom United Kingdom 99.8 -0.0121% 6
Georgia Georgia 69.1 +0.378% 73
Ghana Ghana 44.5 +2% 94
Gibraltar Gibraltar 100 0% 1
Gambia Gambia 47.7 +1.24% 90
Guinea-Bissau Guinea-Bissau 23.9 +0.402% 108
Greece Greece 98.9 0.00000% 23
Guatemala Guatemala 56.3 +0.469% 83
Guam Guam 99.1 0% 19
Hong Kong SAR China Hong Kong SAR China 100 0% 1
Honduras Honduras 65.2 +0.583% 76
Hungary Hungary 100 0.00000% 1
Indonesia Indonesia 30.3 +0.917% 100
Isle of Man Isle of Man 99.7 +0.342% 11
Ireland Ireland 96 -0.00461% 36
Iran Iran 94.2 +0.141% 41
Iraq Iraq 59.7 +0.0667% 79
Iceland Iceland 100 0% 1
Israel Israel 99.5 -0.0145% 16
Italy Italy 92.7 0% 44
Jordan Jordan 85.7 -0.00442% 53
Japan Japan 98.7 0% 26
Kyrgyzstan Kyrgyzstan 76.5 +0.101% 62
Cambodia Cambodia 29.1 +2.33% 103
Kiribati Kiribati 14.4 +1.54% 115
South Korea South Korea 99.3 +0.0705% 17
Kuwait Kuwait 100 0% 1
Laos Laos 17.9 +0.537% 112
Lebanon Lebanon 47.7 0% 89
Liechtenstein Liechtenstein 100 0% 1
Sri Lanka Sri Lanka 47.1 -0.489% 91
Lesotho Lesotho 28.2 +1.26% 105
Lithuania Lithuania 95 +0.0313% 39
Luxembourg Luxembourg 99.5 +0.00688% 15
Latvia Latvia 97.1 +0.295% 30
Macao SAR China Macao SAR China 100 0% 1
Saint Martin (French part) Saint Martin (French part) 96.6 0% 35
Morocco Morocco 74.8 +0.31% 66
Monaco Monaco 100 0% 1
Moldova Moldova 75.2 +0.49% 64
Madagascar Madagascar 22.2 +3.48% 109
Mexico Mexico 43 +0.167% 96
North Macedonia North Macedonia 80.4 +0.0421% 59
Malta Malta 99.8 -0.0177% 7
Myanmar (Burma) Myanmar (Burma) 57.4 +0.124% 82
Montenegro Montenegro 85.1 +0.0274% 54
Mongolia Mongolia 39.3 +2.48% 98
Northern Mariana Islands Northern Mariana Islands 90.6 0% 47
Malawi Malawi 17.8 +3.76% 113
Malaysia Malaysia 93.9 +0.0837% 42
New Caledonia New Caledonia 96.9 0% 32
Nigeria Nigeria 29 +1.98% 104
Netherlands Netherlands 100 -0.00119% 2
Norway Norway 98.8 -0.0549% 24
Nepal Nepal 16.1 +0.247% 114
New Zealand New Zealand 100 0.00000% 1
Oman Oman 90.9 +0.156% 45
Pakistan Pakistan 50.6 +2.08% 87
Peru Peru 52 +0.561% 86
Philippines Philippines 47.9 +0.501% 88
Palau Palau 90.4 +1.39% 48
Poland Poland 88.9 +0.00936% 49
Puerto Rico Puerto Rico 99.9 0% 5
North Korea North Korea 66.5 +0.116% 75
Portugal Portugal 95.2 +0.0738% 38
Paraguay Paraguay 64.2 +0.108% 77
Palestinian Territories Palestinian Territories 80.3 +0.384% 60
French Polynesia French Polynesia 81.8 -1.03% 57
Qatar Qatar 96.7 +0.00615% 34
Romania Romania 82.1 +0.0552% 56
Russia Russia 76.2 +0.128% 63
Senegal Senegal 26.7 +1.2% 106
Singapore Singapore 100 0% 1
Sierra Leone Sierra Leone 10.3 +2.76% 119
San Marino San Marino 100 0% 1
Serbia Serbia 75.1 +0.0442% 65
São Tomé & Príncipe São Tomé & Príncipe 36.3 +0.311% 99
Suriname Suriname 55.8 +0.0357% 84
Slovakia Slovakia 99.2 +0.0359% 18
Slovenia Slovenia 98.3 0% 27
Sweden Sweden 99.7 +0.000435% 10
Turks & Caicos Islands Turks & Caicos Islands 47.1 -0.0412% 92
Chad Chad 6.25 +0.679% 121
Togo Togo 19.4 +1.51% 110
Tajikistan Tajikistan 55.3 +0.0524% 85
Turkmenistan Turkmenistan 94.9 +0.0248% 40
Tonga Tonga 29.5 +0.0681% 102
Tunisia Tunisia 74.3 +0.266% 67
Tuvalu Tuvalu 8.71 +0.459% 120
Tanzania Tanzania 11.3 +2.86% 118
Uganda Uganda 18.7 +5.53% 111
Ukraine Ukraine 87.6 -0.169% 50
United States United States 97.5 +0.153% 29
Uzbekistan Uzbekistan 79.8 +1.31% 61
Vietnam Vietnam 57.8 +0.914% 81
Samoa Samoa 62.2 +0.0741% 78
Zimbabwe Zimbabwe 26.5 +0.149% 107

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.H2O.SMDW.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.H2O.SMDW.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))