People using at least basic sanitation services, urban (% of urban population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 70.4 +2.51% 117
Angola Angola 65.3 0% 119
Albania Albania 99.3 0% 24
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 99 0% 30
Argentina Argentina 98.5 +0.112% 41
Armenia Armenia 100 0% 1
Antigua & Barbuda Antigua & Barbuda 95.4 0% 69
Austria Austria 100 0% 3
Azerbaijan Azerbaijan 96.4 0% 60
Burundi Burundi 41.2 0% 146
Belgium Belgium 99.5 0% 21
Benin Benin 29.5 0% 155
Burkina Faso Burkina Faso 42.2 +0.53% 142
Bangladesh Bangladesh 55.4 +1.29% 126
Bulgaria Bulgaria 86.8 0% 96
Bosnia & Herzegovina Bosnia & Herzegovina 98.9 0% 32
Belarus Belarus 99.9 +0.014% 6
Belize Belize 93.6 0% 78
Bermuda Bermuda 99.9 0% 4
Bolivia Bolivia 77.4 +1.03% 113
Brazil Brazil 94.7 0% 73
Bhutan Bhutan 77.2 0% 114
Botswana Botswana 91.4 0% 88
Central African Republic Central African Republic 24.5 0% 156
Canada Canada 98.6 0% 40
Switzerland Switzerland 99.9 0% 5
Chile Chile 100 0% 1
China China 97.6 +0.973% 49
Côte d’Ivoire Côte d’Ivoire 50.7 +0.963% 131
Cameroon Cameroon 58.2 0% 123
Congo - Kinshasa Congo - Kinshasa 21.8 -0.35% 158
Colombia Colombia 96.7 +0.758% 57
Cape Verde Cape Verde 86.1 0% 97
Costa Rica Costa Rica 98.6 +0.106% 38
Cuba Cuba 92.5 +0.392% 85
Cayman Islands Cayman Islands 83.3 -0.026% 101
Cyprus Cyprus 99.7 0% 14
Czechia Czechia 99.1 0% 28
Germany Germany 99.3 0% 25
Djibouti Djibouti 79.3 0% 109
Denmark Denmark 99.6 0% 17
Dominican Republic Dominican Republic 90.5 +0.452% 90
Algeria Algeria 87.9 0% 92
Ecuador Ecuador 93.2 0% 81
Egypt Egypt 99.8 0% 11
Spain Spain 99.9 0% 5
Estonia Estonia 98.9 -0.0137% 31
Ethiopia Ethiopia 22.3 0% 157
Finland Finland 99.4 0% 22
Fiji Fiji 93.1 -0.329% 83
France France 98.6 0% 39
Gabon Gabon 50.9 0% 130
United Kingdom United Kingdom 99 0% 29
Georgia Georgia 95.5 +0.148% 68
Ghana Ghana 33.7 +3.44% 152
Gibraltar Gibraltar 100 0% 1
Guinea Guinea 47 +2.99% 139
Gambia Gambia 61.1 +1.43% 121
Guinea-Bissau Guinea-Bissau 42.1 0% 143
Greece Greece 99.2 0% 26
Guatemala Guatemala 80.3 +0.141% 105
Guyana Guyana 93.2 +0.452% 80
Hong Kong SAR China Hong Kong SAR China 96.5 0% 58
Honduras Honduras 87.8 +0.426% 93
Haiti Haiti 45.9 0% 141
Hungary Hungary 97.8 0% 47
Indonesia Indonesia 91.5 +0.843% 87
India India 84.7 +2.29% 98
Ireland Ireland 86.8 0% 94
Iran Iran 92.8 0% 84
Iraq Iraq 98.8 0% 33
Iceland Iceland 98.7 0% 36
Israel Israel 100 0% 1
Italy Italy 99.9 0% 7
Jamaica Jamaica 83.2 0% 102
Jordan Jordan 97.3 0% 55
Kazakhstan Kazakhstan 97 0% 56
Kenya Kenya 39.8 +1.24% 148
Kyrgyzstan Kyrgyzstan 95.1 0% 72
Cambodia Cambodia 93.1 +1.36% 82
Kiribati Kiribati 48.1 +0.777% 136
Kuwait Kuwait 100 0% 1
Laos Laos 97.6 0% 48
Liberia Liberia 34.3 +1.63% 151
St. Lucia St. Lucia 79.4 0% 106
Sri Lanka Sri Lanka 95.7 +0.998% 67
Lesotho Lesotho 47.3 0% 138
Lithuania Lithuania 97.5 +0.19% 51
Luxembourg Luxembourg 97.5 0% 53
Macao SAR China Macao SAR China 100 0% 1
Saint Martin (French part) Saint Martin (French part) 100 0% 1
Morocco Morocco 96.4 0% 61
Monaco Monaco 100 0% 1
Moldova Moldova 90.5 +0.152% 91
Madagascar Madagascar 21.6 +2.78% 159
Maldives Maldives 99.8 0% 12
Mexico Mexico 93.6 +0.326% 77
Marshall Islands Marshall Islands 86.8 -0.186% 95
North Macedonia North Macedonia 99.8 0% 10
Mali Mali 60.2 +2.29% 122
Malta Malta 100 0% 2
Myanmar (Burma) Myanmar (Burma) 79.3 0% 107
Montenegro Montenegro 99.6 0% 16
Mongolia Mongolia 75.8 +0.116% 115
Mozambique Mozambique 61.3 +2.26% 120
Mauritania Mauritania 79.3 +3.07% 108
Mauritius Mauritius 95.8 -0.011% 65
Malawi Malawi 48 +2.76% 137
Malaysia Malaysia 96.1 0% 62
Namibia Namibia 49.7 0% 134
Niger Niger 52.8 +2.14% 128
Nigeria Nigeria 57.6 +2.73% 124
Netherlands Netherlands 97.5 0% 52
Norway Norway 98 0% 44
Nepal Nepal 79.1 0% 110
New Zealand New Zealand 100 0% 1
Oman Oman 99.3 0% 23
Pakistan Pakistan 82.3 +1.02% 104
Panama Panama 94.6 0% 74
Peru Peru 83.4 +0.389% 100
Philippines Philippines 83.7 +0.641% 99
Palau Palau 99.1 +0.119% 27
Papua New Guinea Papua New Guinea 48.8 0% 135
Poland Poland 98.8 0% 35
North Korea North Korea 91.7 0% 86
Portugal Portugal 99.6 0% 18
Paraguay Paraguay 95.7 +0.424% 66
Palestinian Territories Palestinian Territories 99.6 +0.416% 19
Romania Romania 97.4 0% 54
Russia Russia 95.4 +0.0854% 71
Rwanda Rwanda 53.6 0% 127
Saudi Arabia Saudi Arabia 95.9 0% 64
Senegal Senegal 70.2 +0.586% 118
Singapore Singapore 100 0% 1
Sierra Leone Sierra Leone 34.5 +3.25% 150
El Salvador El Salvador 91 +0.0204% 89
Somalia Somalia 57 0% 125
Serbia Serbia 99.7 0% 15
South Sudan South Sudan 41.8 0% 145
São Tomé & Príncipe São Tomé & Príncipe 50.6 0% 132
Suriname Suriname 93.8 0% 76
Slovakia Slovakia 98.7 0% 37
Sweden Sweden 98.8 0% 34
Eswatini Eswatini 51.6 0% 129
Syria Syria 96 +0.214% 63
Turks & Caicos Islands Turks & Caicos Islands 93.2 0% 79
Chad Chad 39.5 0% 149
Togo Togo 32.1 0% 153
Thailand Thailand 99.6 0% 20
Tajikistan Tajikistan 94.1 0% 75
Turkmenistan Turkmenistan 99.7 0% 13
Timor-Leste Timor-Leste 71.9 +0.5% 116
Tonga Tonga 96.5 -0.107% 59
Tunisia Tunisia 97.6 0% 50
Turkey Turkey 99.8 0% 9
Tuvalu Tuvalu 82.8 -0.107% 103
Tanzania Tanzania 46.8 0% 140
Uganda Uganda 29.9 +0.268% 154
Ukraine Ukraine 98 0% 45
Uruguay Uruguay 98.3 0% 42
United States United States 99.9 +0.00137% 8
Uzbekistan Uzbekistan 95.4 -0.0424% 70
Vietnam Vietnam 98.1 +0.921% 43
Vanuatu Vanuatu 50.5 -2.19% 133
Samoa Samoa 97.8 +0.288% 46
Yemen Yemen 78.4 0% 111
South Africa South Africa 77.5 +0.389% 112
Zambia Zambia 42 0% 144
Zimbabwe Zimbabwe 40.4 0% 147

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.STA.BASS.UR.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.STA.BASS.UR.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))