People using at least basic sanitation services, rural (% of rural population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 50.7 +3.15% 109
Angola Angola 24.2 0% 127
Albania Albania 99.3 0% 17
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 99.9 0% 3
Armenia Armenia 83.5 0% 75
Antigua & Barbuda Antigua & Barbuda 98 0% 36
Austria Austria 100 0% 1
Burundi Burundi 46.4 0% 113
Belgium Belgium 99.5 +0.000408% 12
Benin Benin 9.63 0% 145
Burkina Faso Burkina Faso 16.6 +4.42% 139
Bangladesh Bangladesh 61.9 +3.09% 102
Bulgaria Bulgaria 83.7 0.0000% 72
Belarus Belarus 98.2 +0.00509% 34
Belize Belize 83.6 0% 73
Bolivia Bolivia 47.3 +3% 112
Brazil Brazil 64.2 0% 99
Bhutan Bhutan 78.5 0% 83
Botswana Botswana 52.4 0% 106
Central African Republic Central African Republic 5.74 0% 150
Canada Canada 98.8 0% 27
Switzerland Switzerland 99.9 0% 4
Chile Chile 100 0% 1
China China 92.9 +2.56% 57
Côte d’Ivoire Côte d’Ivoire 21.7 +2.77% 132
Cameroon Cameroon 21.7 0% 133
Congo - Kinshasa Congo - Kinshasa 11.2 0% 143
Colombia Colombia 85.5 +1.49% 69
Cape Verde Cape Verde 76.6 0% 88
Costa Rica Costa Rica 97.4 +0.445% 41
Cuba Cuba 91.1 +1.06% 61
Cyprus Cyprus 98.8 0% 26
Czechia Czechia 99.3 0% 18
Germany Germany 99 0% 22
Djibouti Djibouti 21.9 0% 130
Denmark Denmark 99.6 0% 9
Dominican Republic Dominican Republic 79.1 +0.583% 82
Algeria Algeria 79.7 0% 80
Ecuador Ecuador 90.7 +1.65% 63
Egypt Egypt 95.8 0% 47
Spain Spain 100 0% 1
Estonia Estonia 99.4 0% 15
Ethiopia Ethiopia 5.55 0% 151
Finland Finland 99.5 -0.00001% 14
Fiji Fiji 93 -0.284% 56
France France 98.9 0% 25
Gabon Gabon 39.7 0% 117
United Kingdom United Kingdom 99.5 0% 13
Georgia Georgia 72.2 -0.913% 91
Ghana Ghana 21.4 +5.66% 134
Guinea Guinea 21.7 +4.88% 131
Gambia Gambia 24 -6.32% 128
Guinea-Bissau Guinea-Bissau 16.2 0% 140
Greece Greece 98.1 0% 35
Guatemala Guatemala 57.7 +1.43% 104
Guyana Guyana 90.2 +0.76% 65
Honduras Honduras 79.4 +1.63% 81
Haiti Haiti 25.4 0% 125
Hungary Hungary 98.6 0% 29
Indonesia Indonesia 83.6 +2.92% 74
India India 74.9 +4.73% 89
Ireland Ireland 93.6 0% 54
Iran Iran 82.3 0% 77
Iraq Iraq 97.6 0% 40
Iceland Iceland 100 0% 1
Israel Israel 99 -0.0908% 24
Italy Italy 99.9 0% 5
Jamaica Jamaica 91 0% 62
Jordan Jordan 95.4 0% 50
Kazakhstan Kazakhstan 99 0% 21
Kenya Kenya 35.2 +1.01% 120
Kyrgyzstan Kyrgyzstan 99.5 0% 11
Cambodia Cambodia 71.2 +5.42% 95
Kiribati Kiribati 41.3 +2.37% 116
Laos Laos 68.6 0% 97
Liberia Liberia 9.21 +4.38% 147
St. Lucia St. Lucia 84.3 0% 71
Sri Lanka Sri Lanka 94.9 +0.904% 51
Lesotho Lesotho 51.6 0% 108
Lithuania Lithuania 90.5 +1.3% 64
Luxembourg Luxembourg 98.7 0% 28
Morocco Morocco 71.4 0% 94
Moldova Moldova 80.7 +0.98% 79
Madagascar Madagascar 10.2 +3.76% 144
Maldives Maldives 99.7 0% 8
Mexico Mexico 87.7 +1.64% 67
Marshall Islands Marshall Islands 61.9 +0.558% 101
North Macedonia North Macedonia 97.7 0% 39
Mali Mali 41.9 +4.89% 115
Malta Malta 100 0% 1
Myanmar (Burma) Myanmar (Burma) 71.7 0% 92
Montenegro Montenegro 93.9 0% 53
Mongolia Mongolia 57 +2.03% 105
Mozambique Mozambique 22.6 +4.31% 129
Mauritania Mauritania 25 +3.71% 126
Malawi Malawi 49.5 +4.92% 111
Malaysia Malaysia 95.8 0% 48
Namibia Namibia 19.6 0% 137
Niger Niger 9.01 +3.88% 149
Nigeria Nigeria 33.9 +0.823% 121
Netherlands Netherlands 99.9 0% 6
Norway Norway 98.3 0% 33
Nepal Nepal 80.8 0% 78
New Zealand New Zealand 100 0% 1
Oman Oman 99.3 0% 16
Pakistan Pakistan 63.4 +3.49% 100
Panama Panama 66.4 0% 98
Peru Peru 60.3 +2.19% 103
Philippines Philippines 85.8 +2.1% 68
Palau Palau 98.4 +0.754% 31
Papua New Guinea Papua New Guinea 14.7 0% 141
Poland Poland 99.2 0% 19
North Korea North Korea 73.1 0% 90
Portugal Portugal 99.8 0% 7
Paraguay Paraguay 92.6 +2.08% 58
Palestinian Territories Palestinian Territories 99 +0.109% 23
Romania Romania 77.4 0% 87
Russia Russia 71.4 +0.74% 93
Rwanda Rwanda 78.2 0% 84
Saudi Arabia Saudi Arabia 92.2 0% 59
Senegal Senegal 50.6 +2.96% 110
Solomon Islands Solomon Islands 20.6 0% 136
Sierra Leone Sierra Leone 13.9 +5.33% 142
El Salvador El Salvador 77.4 +0.299% 86
Somalia Somalia 25.9 0% 124
Serbia Serbia 95.6 0% 49
South Sudan South Sudan 9.28 0% 146
São Tomé & Príncipe São Tomé & Príncipe 39.3 0% 119
Suriname Suriname 82.4 0% 76
Slovakia Slovakia 96.2 0% 46
Sweden Sweden 99.2 0% 20
Eswatini Eswatini 68.6 0% 96
Syria Syria 93.6 +0.507% 55
Turks & Caicos Islands Turks & Caicos Islands 91.6 0% 60
Chad Chad 4.51 0% 152
Togo Togo 9.08 0% 148
Thailand Thailand 98.4 0% 32
Tajikistan Tajikistan 97.8 0% 38
Turkmenistan Turkmenistan 99.9 0% 2
Timor-Leste Timor-Leste 52 +2.49% 107
Tonga Tonga 94.9 +0.381% 52
Tunisia Tunisia 97.1 0% 45
Turkey Turkey 97.2 0% 43
Tuvalu Tuvalu 85.1 +0.28% 70
Tanzania Tanzania 21.3 0% 135
Uganda Uganda 17.9 +0.807% 138
Ukraine Ukraine 97.2 0% 44
Uruguay Uruguay 99.5 0% 10
United States United States 98.5 -0.124% 30
Uzbekistan Uzbekistan 97.3 +0.298% 42
Vietnam Vietnam 88.4 +2.66% 66
Vanuatu Vanuatu 45.4 -0.775% 114
Samoa Samoa 98 +0.389% 37
Yemen Yemen 39.6 0% 118
South Africa South Africa 77.9 +2.21% 85
Zambia Zambia 31.5 0% 123
Zimbabwe Zimbabwe 31.8 0% 122

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.STA.BASS.RU.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.STA.BASS.RU.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))