People using at least basic sanitation services (% of population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 98.8 +0.0399% 41
Afghanistan Afghanistan 56 +3.04% 136
Angola Angola 52.2 +0.492% 140
Albania Albania 99.3 +0.000234% 26
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 99.1 -0.00234% 33
Armenia Armenia 94 +0.025% 79
American Samoa American Samoa 54.1 -0.0127% 139
Antigua & Barbuda Antigua & Barbuda 97.4 +0.000925% 64
Australia Australia 100 0% 1
Austria Austria 100 -0.000123% 3
Burundi Burundi 45.7 -0.0408% 149
Belgium Belgium 99.5 +0.00001% 20
Benin Benin 19.5 +0.577% 168
Burkina Faso Burkina Faso 24.8 +2.98% 164
Bangladesh Bangladesh 59.3 +2.34% 134
Bulgaria Bulgaria 86.1 +0.012% 103
Bahrain Bahrain 100 0% 1
Belarus Belarus 99.6 +0.0193% 19
Belize Belize 88.3 +0.0219% 97
Bermuda Bermuda 99.9 0% 6
Bolivia Bolivia 68.6 +1.59% 129
Brazil Brazil 90.9 +0.0799% 89
Barbados Barbados 98.1 0% 50
Brunei Brunei 99.5 +1.24% 21
Bhutan Bhutan 77.9 -0.0113% 121
Botswana Botswana 80.6 +0.322% 115
Central African Republic Central African Republic 13.8 +0.645% 175
Canada Canada 98.6 -0.000211% 44
Switzerland Switzerland 99.9 0.00000% 11
Chile Chile 100 0.0000% 2
China China 95.9 +1.6% 71
Côte d’Ivoire Côte d’Ivoire 37 +1.85% 155
Cameroon Cameroon 43.1 +0.498% 151
Congo - Kinshasa Congo - Kinshasa 16.2 +0.175% 172
Colombia Colombia 94.7 +0.914% 77
Cape Verde Cape Verde 83 +0.0509% 113
Costa Rica Costa Rica 98.4 +0.175% 47
Cuba Cuba 92.1 +0.544% 86
Cayman Islands Cayman Islands 83.3 -0.026% 112
Cyprus Cyprus 99.4 +0.000499% 24
Czechia Czechia 99.1 -0.000281% 30
Germany Germany 99.2 +0.000314% 28
Djibouti Djibouti 66.9 +0.14% 130
Denmark Denmark 99.6 0.00000% 18
Dominican Republic Dominican Republic 88.7 +0.554% 95
Algeria Algeria 85.8 +0.0489% 105
Ecuador Ecuador 92.3 +0.577% 84
Egypt Egypt 97.5 +0.0042% 62
Spain Spain 99.9 -0.000244% 10
Estonia Estonia 99.1 -0.0104% 34
Ethiopia Ethiopia 9.34 +0.88% 177
Finland Finland 99.4 -0.00001% 22
Fiji Fiji 93 -0.31% 82
France France 98.6 -0.000817% 43
Gabon Gabon 49.9 +0.0701% 143
United Kingdom United Kingdom 99.1 -0.00109% 32
Georgia Georgia 86.3 -0.0968% 102
Ghana Ghana 28.6 +4.42% 162
Gibraltar Gibraltar 100 0% 1
Guinea Guinea 31.3 +4.15% 160
Gambia Gambia 47.7 +0.378% 146
Guinea-Bissau Guinea-Bissau 27.8 +0.396% 163
Greece Greece 99 +0.00344% 37
Greenland Greenland 62.5 0% 132
Guatemala Guatemala 69.6 +0.787% 128
Guam Guam 90.4 +0.0706% 90
Guyana Guyana 91 +0.679% 88
Hong Kong SAR China Hong Kong SAR China 96.5 0% 68
Honduras Honduras 84.4 +0.951% 109
Haiti Haiti 37.5 +0.469% 153
Hungary Hungary 98 -0.00255% 52
Indonesia Indonesia 88.2 +1.73% 98
Isle of Man Isle of Man 100 0% 1
India India 78.4 +3.85% 120
Ireland Ireland 89.3 -0.0205% 94
Iran Iran 90.4 +0.0537% 91
Iraq Iraq 98.5 +0.00285% 45
Iceland Iceland 98.8 -0.000633% 42
Israel Israel 99.9 -0.00567% 9
Italy Italy 99.9 -0.00006% 12
Jamaica Jamaica 86.6 -0.0318% 101
Jordan Jordan 97.1 +0.00401% 65
Japan Japan 99.9 -0.00295% 7
Kazakhstan Kazakhstan 97.9 -0.00339% 56
Kenya Kenya 36.5 +1.15% 156
Kyrgyzstan Kyrgyzstan 97.9 -0.0141% 55
Cambodia Cambodia 76.7 +4.3% 123
Kiribati Kiribati 45.2 +1.52% 150
South Korea South Korea 99.8 -0.0124% 14
Kuwait Kuwait 100 0% 1
Laos Laos 79.5 +0.239% 118
Lebanon Lebanon 99.2 0% 29
Liberia Liberia 22.5 +2.72% 166
Libya Libya 92.1 0% 87
St. Lucia St. Lucia 83.4 -0.00639% 111
Liechtenstein Liechtenstein 100 0% 5
Sri Lanka Sri Lanka 95.1 +0.923% 75
Lesotho Lesotho 50.3 -0.0391% 141
Lithuania Lithuania 95.3 +0.539% 73
Luxembourg Luxembourg 97.6 -0.00271% 60
Macao SAR China Macao SAR China 100 0% 1
Saint Martin (French part) Saint Martin (French part) 100 0% 1
Morocco Morocco 87.5 +0.152% 100
Monaco Monaco 100 0% 1
Moldova Moldova 84.9 +0.619% 106
Madagascar Madagascar 14.8 +3.74% 174
Maldives Maldives 99.7 +0.000382% 15
Mexico Mexico 92.5 +0.578% 83
Marshall Islands Marshall Islands 81.5 +0.0461% 114
North Macedonia North Macedonia 99 +0.00706% 38
Mali Mali 50.2 +3.77% 142
Malta Malta 100 -0.00002% 4
Myanmar (Burma) Myanmar (Burma) 74.1 +0.0333% 124
Montenegro Montenegro 97.8 +0.0198% 57
Mongolia Mongolia 70 +0.635% 127
Northern Mariana Islands Northern Mariana Islands 80.3 +0.267% 117
Mozambique Mozambique 37.4 +3.63% 154
Mauritania Mauritania 55.9 +3.99% 137
Malawi Malawi 49.2 +4.53% 144
Malaysia Malaysia 96 +0.0015% 70
Namibia Namibia 35.8 +0.808% 158
New Caledonia New Caledonia 100 0% 1
Niger Niger 16.4 +3.33% 171
Nigeria Nigeria 46.6 +2.47% 148
Netherlands Netherlands 97.7 -0.0077% 59
Norway Norway 98 -0.00104% 51
Nepal Nepal 80.4 -0.00935% 116
New Zealand New Zealand 100 0.00000% 1
Oman Oman 99.3 +0.000177% 25
Pakistan Pakistan 70.5 +2.48% 126
Panama Panama 85.9 +0.12% 104
Peru Peru 78.5 +0.745% 119
Philippines Philippines 84.8 +1.4% 108
Palau Palau 99 +0.239% 35
Papua New Guinea Papua New Guinea 19.3 +0.223% 169
Poland Poland 99 -0.000277% 39
Puerto Rico Puerto Rico 100 0% 1
North Korea North Korea 84.8 +0.0602% 107
Portugal Portugal 99.7 -0.00106% 16
Paraguay Paraguay 94.6 +1.04% 78
Palestinian Territories Palestinian Territories 99.4 +0.347% 23
French Polynesia French Polynesia 97 0% 66
Qatar Qatar 99.9 0.00000% 8
Romania Romania 88.3 +0.0362% 96
Russia Russia 89.4 +0.267% 93
Rwanda Rwanda 73.8 -0.051% 125
Saudi Arabia Saudi Arabia 95.3 +0.00855% 72
Senegal Senegal 60.2 +1.76% 133
Singapore Singapore 100 0% 1
Sierra Leone Sierra Leone 22.9 +4.38% 165
El Salvador El Salvador 87.6 +0.185% 99
San Marino San Marino 100 0% 1
Somalia Somalia 40.6 +0.457% 152
Serbia Serbia 97.9 +0.00922% 54
South Sudan South Sudan 16.1 +0.677% 173
São Tomé & Príncipe São Tomé & Príncipe 47.8 +0.161% 145
Suriname Suriname 90 +0.0112% 92
Slovakia Slovakia 97.5 +0.00229% 61
Slovenia Slovenia 98.3 0% 49
Sweden Sweden 98.9 -0.00086% 40
Eswatini Eswatini 64.4 -0.0546% 131
Seychelles Seychelles 100 0% 1
Syria Syria 95 +0.358% 76
Turks & Caicos Islands Turks & Caicos Islands 93.1 +0.00378% 81
Chad Chad 12.9 +0.768% 176
Togo Togo 19.2 +0.68% 170
Thailand Thailand 99 +0.00839% 36
Tajikistan Tajikistan 96.7 -0.0092% 67
Turkmenistan Turkmenistan 99.8 -0.00105% 13
Timor-Leste Timor-Leste 58.4 +1.84% 135
Tonga Tonga 95.3 +0.267% 74
Trinidad & Tobago Trinidad & Tobago 93.9 0% 80
Tunisia Tunisia 97.4 +0.00159% 63
Turkey Turkey 99.2 +0.0119% 27
Tuvalu Tuvalu 83.5 +0.0108% 110
Tanzania Tanzania 30.6 +0.61% 161
Uganda Uganda 21 +0.961% 167
Ukraine Ukraine 97.7 +0.00138% 58
Uruguay Uruguay 98.3 -0.00107% 48
United States United States 99.6 -0.0171% 17
Uzbekistan Uzbekistan 96.3 +0.127% 69
Venezuela Venezuela 98.4 +1.44% 46
U.S. Virgin Islands U.S. Virgin Islands 99.1 +0.00175% 31
Vietnam Vietnam 92.2 +2.03% 85
Vanuatu Vanuatu 46.7 -1.16% 147
Samoa Samoa 97.9 +0.371% 53
Yemen Yemen 54.8 +0.456% 138
South Africa South Africa 77.6 +0.967% 122
Zambia Zambia 36.3 +0.164% 157
Zimbabwe Zimbabwe 34.6 +0.0228% 159

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.STA.BASS.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.STA.BASS.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))