People using at least basic drinking water services (% of population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 82.2 +3.11% 125
Angola Angola 57.7 +0.475% 156
Albania Albania 95.1 +0.0137% 85
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 100 0% 1
Armenia Armenia 100 +0.0134% 12
Antigua & Barbuda Antigua & Barbuda 98.4 0.0000% 59
Australia Australia 100 -0.00004% 11
Austria Austria 100 0.00000% 4
Azerbaijan Azerbaijan 97.6 +0.655% 67
Burundi Burundi 62.4 +0.19% 149
Belgium Belgium 100 0% 1
Benin Benin 67.4 +0.349% 143
Burkina Faso Burkina Faso 49.5 +0.986% 161
Bangladesh Bangladesh 98.1 +0.0653% 60
Bulgaria Bulgaria 99.1 -0.027% 44
Bahrain Bahrain 99.9 0% 16
Bosnia & Herzegovina Bosnia & Herzegovina 96.1 -0.0108% 77
Belarus Belarus 99.2 -0.00912% 41
Belize Belize 98.4 +0.00175% 57
Bermuda Bermuda 99.9 0% 18
Bolivia Bolivia 94.1 +0.545% 94
Brazil Brazil 99.6 +0.00439% 32
Barbados Barbados 98.5 0% 55
Brunei Brunei 99.9 0.00000% 19
Bhutan Bhutan 99.1 +0.00449% 43
Botswana Botswana 92.6 +0.129% 102
Central African Republic Central African Republic 36.3 +0.27% 164
Canada Canada 99.2 +0.000197% 40
Switzerland Switzerland 100 0% 1
Chile Chile 100 0.0000% 6
China China 97.6 +0.985% 66
Côte d’Ivoire Côte d’Ivoire 72.9 +0.155% 136
Cameroon Cameroon 69.6 +1.01% 140
Congo - Kinshasa Congo - Kinshasa 35.1 -0.557% 165
Colombia Colombia 97.5 +0.148% 68
Cape Verde Cape Verde 89.9 +0.0507% 111
Costa Rica Costa Rica 99.8 +0.00126% 25
Cuba Cuba 94.7 +0.101% 90
Cayman Islands Cayman Islands 95.5 -0.0395% 83
Cyprus Cyprus 99.8 -0.00007% 27
Czechia Czechia 99.9 +0.000137% 23
Germany Germany 100 0.00000% 5
Djibouti Djibouti 76.2 +0.0789% 131
Denmark Denmark 100 0.00000% 1
Dominican Republic Dominican Republic 96.8 +0.0516% 74
Algeria Algeria 94.7 +0.031% 89
Ecuador Ecuador 95.7 +0.0265% 81
Egypt Egypt 98.8 +0.000961% 52
Spain Spain 99.9 -0.000224% 15
Estonia Estonia 100 0.00000% 1
Ethiopia Ethiopia 51.5 +2.94% 159
Finland Finland 100 0% 1
Fiji Fiji 95.5 +0.0368% 84
France France 100 0% 1
Faroe Islands Faroe Islands 100 0% 1
Gabon Gabon 86.9 +0.35% 116
United Kingdom United Kingdom 100 0.00000% 8
Georgia Georgia 95 +0.161% 86
Ghana Ghana 88.4 +1.12% 113
Gibraltar Gibraltar 100 0% 1
Guinea Guinea 71.5 +1.81% 138
Gambia Gambia 85.6 +0.681% 119
Guinea-Bissau Guinea-Bissau 61.8 +0.141% 151
Greece Greece 100 0.00000% 3
Greenland Greenland 100 0% 1
Guatemala Guatemala 94.6 +0.389% 92
Guam Guam 99.7 0% 30
Guyana Guyana 95.9 +0.304% 79
Hong Kong SAR China Hong Kong SAR China 100 0% 1
Honduras Honduras 95.8 +0.395% 80
Haiti Haiti 67.4 +0.533% 142
Hungary Hungary 100 0.00000% 1
Indonesia Indonesia 94.1 +0.809% 95
Isle of Man Isle of Man 99.9 +0.137% 22
India India 93.3 +0.62% 100
Ireland Ireland 96 -0.00461% 78
Iran Iran 97.7 +0.122% 65
Iraq Iraq 98.4 +0.0119% 58
Iceland Iceland 100 0% 1
Israel Israel 100 0% 1
Italy Italy 99.9 0% 17
Jamaica Jamaica 91.1 +0.0391% 107
Jordan Jordan 99 +0.0044% 46
Japan Japan 99.1 0% 42
Kenya Kenya 62.9 +1.07% 148
Kyrgyzstan Kyrgyzstan 90.8 +0.0466% 108
Cambodia Cambodia 78 +1.22% 128
Kiribati Kiribati 75.7 +1.12% 132
South Korea South Korea 100 +0.0705% 1
Kuwait Kuwait 100 0% 1
Laos Laos 85.5 +0.142% 120
Lebanon Lebanon 92.6 0% 101
Liberia Liberia 75.6 +0.632% 133
Libya Libya 99.9 0% 20
St. Lucia St. Lucia 96.9 +0.000441% 73
Liechtenstein Liechtenstein 100 0% 1
Sri Lanka Sri Lanka 89.3 +0.346% 112
Lesotho Lesotho 74 +0.464% 134
Lithuania Lithuania 98 +0.0137% 61
Luxembourg Luxembourg 99.9 +0.00294% 21
Latvia Latvia 98.9 +0.0521% 47
Macao SAR China Macao SAR China 100 0% 1
Saint Martin (French part) Saint Martin (French part) 99.9 0% 14
Morocco Morocco 87 +0.203% 114
Monaco Monaco 100 0% 1
Moldova Moldova 92 +0.485% 104
Madagascar Madagascar 53.5 +1.44% 157
Maldives Maldives 99.6 -0.00378% 34
Mexico Mexico 99.7 +0.167% 29
Marshall Islands Marshall Islands 85.1 -0.251% 121
North Macedonia North Macedonia 97.8 +0.00234% 64
Mali Mali 83.6 +1.76% 122
Malta Malta 100 0.00000% 1
Myanmar (Burma) Myanmar (Burma) 82.4 +0.0648% 124
Montenegro Montenegro 98.9 +0.00352% 49
Mongolia Mongolia 83.5 +0.84% 123
Northern Mariana Islands Northern Mariana Islands 100 0% 1
Mozambique Mozambique 63.2 +2.79% 147
Mauritania Mauritania 77.8 +2.31% 129
Mauritius Mauritius 100 0.00000% 2
Malawi Malawi 71.9 +1.12% 137
Malaysia Malaysia 97.2 +0.0484% 70
Namibia Namibia 85.9 +0.249% 118
New Caledonia New Caledonia 99.5 0% 35
Niger Niger 48.9 +1.74% 162
Nigeria Nigeria 79.6 +2.1% 127
Netherlands Netherlands 100 0.00000% 9
Norway Norway 100 0% 1
Nepal Nepal 91.2 -0.00784% 106
New Zealand New Zealand 100 0.00000% 1
Oman Oman 92.4 +0.141% 103
Pakistan Pakistan 90.6 +0.158% 109
Panama Panama 94.7 +0.0481% 91
Peru Peru 94.8 +0.634% 88
Philippines Philippines 94.9 +0.436% 87
Palau Palau 99.6 +0.00592% 33
Papua New Guinea Papua New Guinea 50.2 +2.17% 160
Poland Poland 90.4 +0.00886% 110
Puerto Rico Puerto Rico 100 0% 1
North Korea North Korea 93.9 +0.0238% 97
Portugal Portugal 99.3 +0.0148% 38
Paraguay Paraguay 99.6 +0.0025% 31
Palestinian Territories Palestinian Territories 98.4 +0.279% 56
French Polynesia French Polynesia 100 0% 1
Qatar Qatar 100 +0.00615% 10
Romania Romania 100 0.00000% 7
Russia Russia 97.1 +0.0881% 71
Rwanda Rwanda 65.1 +1.01% 145
Saudi Arabia Saudi Arabia 98.6 -0.00357% 53
Sudan Sudan 64.9 +1.62% 146
Senegal Senegal 86.2 +1.39% 117
Singapore Singapore 100 0% 1
Sierra Leone Sierra Leone 65.3 +1.77% 144
El Salvador El Salvador 98.6 +0.406% 54
San Marino San Marino 100 0% 1
Somalia Somalia 58.3 +0.424% 155
Serbia Serbia 95.7 -0.0016% 82
South Sudan South Sudan 41.2 +0.294% 163
São Tomé & Príncipe São Tomé & Príncipe 77.3 +0.0724% 130
Suriname Suriname 98 +0.00193% 62
Slovakia Slovakia 99.8 -0.000351% 26
Slovenia Slovenia 99.5 0% 37
Sweden Sweden 99.7 +0.000435% 28
Eswatini Eswatini 73.5 +1.4% 135
Seychelles Seychelles 96.4 0% 76
Syria Syria 94.1 +0.0258% 96
Turks & Caicos Islands Turks & Caicos Islands 98.8 +0.0161% 51
Chad Chad 52 +0.185% 158
Togo Togo 71 +1.49% 139
Thailand Thailand 100 0.00000% 1
Tajikistan Tajikistan 81.9 +0.056% 126
Turkmenistan Turkmenistan 100 0.00000% 1
Timor-Leste Timor-Leste 87 +1.7% 115
Tonga Tonga 98.8 +0.0379% 50
Trinidad & Tobago Trinidad & Tobago 98.9 0% 48
Tunisia Tunisia 97.2 +0.25% 69
Turkey Turkey 97 +0.00607% 72
Tuvalu Tuvalu 99.3 +0.0191% 39
Tanzania Tanzania 60.8 +2.41% 153
Uganda Uganda 59.3 +2.87% 154
Ukraine Ukraine 93.6 +0.059% 98
Uruguay Uruguay 99.5 +0.00376% 36
United States United States 100 +0.0692% 13
Uzbekistan Uzbekistan 96.6 +0.346% 75
Venezuela Venezuela 93.3 -0.189% 99
British Virgin Islands British Virgin Islands 99.9 0% 24
Vietnam Vietnam 98 +0.657% 63
Vanuatu Vanuatu 91.3 +0.467% 105
Samoa Samoa 99 +0.779% 45
Yemen Yemen 61.8 +0.265% 152
South Africa South Africa 94.5 +0.382% 93
Zambia Zambia 68.2 +0.313% 141
Zimbabwe Zimbabwe 62.3 +0.0666% 150

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.H2O.BASW.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.H2O.BASW.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))