People practicing open defecation, urban (% of urban population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0 83
Angola Angola 0 83
Albania Albania 0 83
Andorra Andorra 0 83
United Arab Emirates United Arab Emirates 0 83
Argentina Argentina 0 83
Armenia Armenia 0 83
Antigua & Barbuda Antigua & Barbuda 0.698 0% 51
Austria Austria 0 83
Azerbaijan Azerbaijan 0 83
Burundi Burundi 0.0793 0% 72
Belgium Belgium 0 83
Benin Benin 31.2 -0.746% 2
Burkina Faso Burkina Faso 5.55 -3.3% 16
Bangladesh Bangladesh 0 83
Bulgaria Bulgaria 0 83
Bosnia & Herzegovina Bosnia & Herzegovina 0 83
Belarus Belarus 0 83
Belize Belize 0.722 0% 50
Bermuda Bermuda 0 83
Bolivia Bolivia 0 83
Brazil Brazil 0 83
Bhutan Bhutan 0 83
Botswana Botswana 1.21 0% 36
Central African Republic Central African Republic 6.84 0% 14
Canada Canada 0 83
Switzerland Switzerland 0 83
Chile Chile 0 83
China China 0.164 -0.197% 65
Côte d’Ivoire Côte d’Ivoire 6.5 +0.295% 15
Cameroon Cameroon 0.822 0% 47
Congo - Kinshasa Congo - Kinshasa 3.9 0% 23
Colombia Colombia 0.671 -7.1% 52
Cape Verde Cape Verde 4.19 0% 21
Costa Rica Costa Rica 0.086 -17.8% 71
Cuba Cuba 0.0878 0% 69
Cayman Islands Cayman Islands 0 83
Cyprus Cyprus 0 83
Czechia Czechia 0 83
Germany Germany 0 83
Djibouti Djibouti 2.71 0% 27
Denmark Denmark 0 83
Dominican Republic Dominican Republic 1.19 -4.78% 37
Algeria Algeria 0 83
Ecuador Ecuador 0 83
Egypt Egypt 0.0159 0% 78
Spain Spain 0 83
Estonia Estonia 0 83
Ethiopia Ethiopia 3.28 0% 26
Finland Finland 0 83
Fiji Fiji 0 83
France France 0 83
Gabon Gabon 1.88 +0.516% 31
United Kingdom United Kingdom 0 83
Georgia Georgia 0.00548 +5.5% 81
Ghana Ghana 8.44 +0.258% 10
Gibraltar Gibraltar 0 83
Guinea Guinea 0.925 -3.77% 43
Gambia Gambia 0.102 -27.1% 68
Guinea-Bissau Guinea-Bissau 0.417 0% 57
Greece Greece 0 83
Guatemala Guatemala 0.607 -18.5% 53
Guyana Guyana 0.0484 -34.3% 76
Hong Kong SAR China Hong Kong SAR China 0 83
Honduras Honduras 1.28 -8.05% 34
Haiti Haiti 8.12 0% 11
Hungary Hungary 0 83
Indonesia Indonesia 2.18 -19.3% 28
India India 0.555 -67.5% 54
Ireland Ireland 0 83
Iran Iran 0 83
Iraq Iraq 0.00627 0% 80
Iceland Iceland 0 83
Israel Israel 0 83
Italy Italy 0 83
Jamaica Jamaica 0.962 0% 42
Jordan Jordan 0.078 0% 73
Kazakhstan Kazakhstan 0 83
Kenya Kenya 0.865 -10.4% 46
Kyrgyzstan Kyrgyzstan 0 83
Cambodia Cambodia 0 83
Kiribati Kiribati 21.7 -1.13% 3
Kuwait Kuwait 0 83
Laos Laos 0 83
Liberia Liberia 15.7 -3.56% 6
St. Lucia St. Lucia 2.12 0% 29
Sri Lanka Sri Lanka 0 83
Lesotho Lesotho 3.84 -5.72% 24
Lithuania Lithuania 0 83
Luxembourg Luxembourg 0 83
Macao SAR China Macao SAR China 0 83
Saint Martin (French part) Saint Martin (French part) 0 83
Morocco Morocco 0 83
Monaco Monaco 0 83
Moldova Moldova 0 83
Madagascar Madagascar 16.7 -0.763% 5
Maldives Maldives 0 83
Mexico Mexico 0 -100% 83
Marshall Islands Marshall Islands 5.25 +2.75% 17
North Macedonia North Macedonia 0 83
Mali Mali 1.15 -8.08% 38
Malta Malta 0 83
Myanmar (Burma) Myanmar (Burma) 0.813 0% 48
Montenegro Montenegro 0 83
Mongolia Mongolia 0.346 -13.5% 58
Mozambique Mozambique 5.21 -14.2% 18
Mauritania Mauritania 5.05 -12.1% 19
Mauritius Mauritius 0.27 +4.25% 59
Malawi Malawi 1.1 -4.96% 39
Malaysia Malaysia 0 83
Namibia Namibia 20.5 0% 4
Niger Niger 9.59 -5.63% 9
Nigeria Nigeria 7.37 -3.4% 13
Netherlands Netherlands 0 83
Norway Norway 0 83
Nepal Nepal 3.45 0% 25
New Zealand New Zealand 0 83
Oman Oman 0 83
Pakistan Pakistan 0.141 -59.1% 67
Panama Panama 0.441 0% 56
Peru Peru 1.05 -21.2% 41
Philippines Philippines 1.61 -9.8% 33
Palau Palau 0 83
Papua New Guinea Papua New Guinea 4.05 0% 22
Poland Poland 0 83
North Korea North Korea 0 83
Portugal Portugal 0 83
Paraguay Paraguay 0 -100% 83
Palestinian Territories Palestinian Territories 0 83
Romania Romania 0 83
Russia Russia 0 83
Rwanda Rwanda 1.26 0% 35
Saudi Arabia Saudi Arabia 0 83
Senegal Senegal 1.08 -9.59% 40
Singapore Singapore 0 83
Sierra Leone Sierra Leone 4.22 -2.71% 20
El Salvador El Salvador 0 83
Somalia Somalia 0.178 0% 64
Serbia Serbia 0.0479 0% 77
South Sudan South Sudan 8.06 0% 12
São Tomé & Príncipe São Tomé & Príncipe 38.6 0% 1
Suriname Suriname 0.182 0% 63
Slovakia Slovakia 0 83
Sweden Sweden 0 83
Eswatini Eswatini 0.923 -4.82% 44
Syria Syria 0.0527 0% 75
Turks & Caicos Islands Turks & Caicos Islands 0 83
Chad Chad 15.4 0% 7
Togo Togo 11.4 -4.4% 8
Thailand Thailand 0.0579 0.000000% 74
Tajikistan Tajikistan 0 83
Turkmenistan Turkmenistan 0 83
Timor-Leste Timor-Leste 0 83
Tonga Tonga 0.0871 +0.548% 70
Tunisia Tunisia 0.21 -5.51% 62
Turkey Turkey 0.00192 0% 82
Tuvalu Tuvalu 2.11 -6.91% 30
Tanzania Tanzania 0.452 -18.8% 55
Uganda Uganda 1.77 -0.643% 32
Ukraine Ukraine 0 83
Uruguay Uruguay 0.159 0% 66
United States United States 0 83
Uzbekistan Uzbekistan 0 83
Vietnam Vietnam 0 83
Vanuatu Vanuatu 0.216 -4.68% 61
Samoa Samoa 0.0126 +6.59% 79
Yemen Yemen 0.898 0% 45
South Africa South Africa 0.218 -35% 60
Zambia Zambia 0.784 0% 49
Zimbabwe Zimbabwe 0 83

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.STA.ODFC.UR.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.STA.ODFC.UR.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))