People practicing open defecation (% of population)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 0.858 -1.9% 66
Afghanistan Afghanistan 8.84 -7.52% 32
Angola Angola 17.3 -1.91% 21
Albania Albania 0 104
Andorra Andorra 0 104
United Arab Emirates United Arab Emirates 0 104
Armenia Armenia 0.0106 -0.388% 100
Antigua & Barbuda Antigua & Barbuda 0.624 -0.00529% 70
Australia Australia 0 104
Austria Austria 0 104
Burundi Burundi 1.44 -0.395% 63
Belgium Belgium 0 104
Benin Benin 48.5 -1.69% 4
Burkina Faso Burkina Faso 33.6 -4.75% 10
Bangladesh Bangladesh 0 104
Bulgaria Bulgaria 0 104
Bahrain Bahrain 0 104
Belarus Belarus 0 104
Belize Belize 0.57 +0.0969% 71
Bermuda Bermuda 0 104
Bolivia Bolivia 8.55 -6.09% 35
Brazil Brazil 0.0927 -1.88% 89
Brunei Brunei 0 104
Bhutan Bhutan 0 104
Botswana Botswana 5.21 -1.8% 47
Central African Republic Central African Republic 25 -0.6% 13
Canada Canada 0 104
Switzerland Switzerland 0 104
Chile Chile 0 104
China China 0.104 -27.3% 86
Côte d’Ivoire Côte d’Ivoire 21.2 -2.87% 15
Cameroon Cameroon 4.25 -3.53% 50
Congo - Kinshasa Congo - Kinshasa 11.8 -0.754% 29
Colombia Colombia 2.4 -8.06% 59
Cape Verde Cape Verde 8.54 -0.691% 36
Costa Rica Costa Rica 0.108 -18.2% 85
Cuba Cuba 0.17 -0.233% 76
Cayman Islands Cayman Islands 0 104
Cyprus Cyprus 0 104
Czechia Czechia 0 104
Germany Germany 0 104
Djibouti Djibouti 16 -0.622% 26
Denmark Denmark 0 104
Dominican Republic Dominican Republic 1.83 -5.62% 62
Algeria Algeria 0 104
Ecuador Ecuador 0.646 -38.9% 69
Egypt Egypt 0.00685 +0.245% 101
Spain Spain 0 104
Estonia Estonia 0 104
Ethiopia Ethiopia 17.6 -0.51% 19
Finland Finland 0 104
Fiji Fiji 0 104
France France 0 104
Gabon Gabon 2.02 +0.0399% 60
United Kingdom United Kingdom 0 104
Georgia Georgia 0.0033 +6.25% 103
Ghana Ghana 17.2 -0.848% 22
Gibraltar Gibraltar 0 104
Guinea Guinea 7.15 -11.3% 39
Gambia Gambia 0.0654 -47.1% 91
Guinea-Bissau Guinea-Bissau 8.43 -0.728% 37
Greece Greece 0 104
Greenland Greenland 0 104
Guatemala Guatemala 1.12 -31.3% 65
Guyana Guyana 0.29 -14.1% 74
Hong Kong SAR China Hong Kong SAR China 0 104
Honduras Honduras 4.15 -11.3% 52
Haiti Haiti 17.7 -1.11% 18
Hungary Hungary 0 104
Indonesia Indonesia 4.19 -20.7% 51
Isle of Man Isle of Man 0 104
India India 11.1 -19.4% 30
Ireland Ireland 0 104
Iraq Iraq 0.00447 +0.33% 102
Iceland Iceland 0 104
Israel Israel 0 104
Italy Italy 0 104
Jamaica Jamaica 0.8 +0.167% 67
Jordan Jordan 0.104 -0.61% 87
Japan Japan 0 104
Kazakhstan Kazakhstan 0.0297 -0.401% 98
Kenya Kenya 6.45 -7.27% 43
Kyrgyzstan Kyrgyzstan 0 104
Cambodia Cambodia 12.1 -19.5% 28
Kiribati Kiribati 32.8 -1.4% 11
South Korea South Korea 0 104
Kuwait Kuwait 0 104
Laos Laos 16.2 -1.04% 24
Lebanon Lebanon 0 104
Liberia Liberia 35.2 -2.51% 8
Libya Libya 0.748 0% 68
St. Lucia St. Lucia 6.19 -0.0893% 46
Liechtenstein Liechtenstein 0 104
Sri Lanka Sri Lanka 0 104
Lesotho Lesotho 15 -8.15% 27
Lithuania Lithuania 0 104
Luxembourg Luxembourg 0 104
Macao SAR China Macao SAR China 0 104
Saint Martin (French part) Saint Martin (French part) 0 104
Morocco Morocco 0 104
Monaco Monaco 0 104
Moldova Moldova 0.133 -0.307% 82
Madagascar Madagascar 33.6 -1.12% 9
Maldives Maldives 0 104
Mexico Mexico 0 -100% 104
Marshall Islands Marshall Islands 8.68 -1.36% 33
North Macedonia North Macedonia 0.109 -0.806% 84
Mali Mali 4.54 -11% 49
Malta Malta 0 104
Myanmar (Burma) Myanmar (Burma) 6.81 -0.415% 41
Montenegro Montenegro 0.041 -1.05% 96
Mongolia Mongolia 5.03 -8.62% 48
Northern Mariana Islands Northern Mariana Islands 0.16 0% 77
Mozambique Mozambique 19.6 -8.01% 16
Mauritania Mauritania 26.9 -4.22% 12
Malawi Malawi 2.61 -17.2% 58
Namibia Namibia 37.2 -0.919% 7
New Caledonia New Caledonia 0 104
Niger Niger 65 -1.35% 1
Nigeria Nigeria 18.4 -1.61% 17
Netherlands Netherlands 0 104
Norway Norway 0 104
Nepal Nepal 6.98 -0.284% 40
New Zealand New Zealand 0 104
Oman Oman 0 104
Pakistan Pakistan 6.75 -16.2% 42
Panama Panama 3.99 -1.04% 53
Peru Peru 2.88 -18% 56
Philippines Philippines 3.02 -11.2% 55
Palau Palau 0 104
Papua New Guinea Papua New Guinea 16.1 -0.109% 25
Poland Poland 0 104
Puerto Rico Puerto Rico 0 104
North Korea North Korea 0 104
Portugal Portugal 0 104
Paraguay Paraguay 0.323 -46% 72
Palestinian Territories Palestinian Territories 0.102 -10.9% 88
French Polynesia French Polynesia 0 104
Qatar Qatar 0.0635 +0.000411% 92
Romania Romania 0 104
Russia Russia 0 104
Rwanda Rwanda 1.86 -0.0599% 61
Saudi Arabia Saudi Arabia 0 104
Senegal Senegal 7.71 -8.31% 38
Singapore Singapore 0 104
Sierra Leone Sierra Leone 16.4 -2.38% 23
El Salvador El Salvador 0 -100% 104
San Marino San Marino 0 104
Somalia Somalia 21.3 -1.1% 14
Serbia Serbia 0.0581 -0.0907% 93
South Sudan South Sudan 59.7 -0.361% 3
São Tomé & Príncipe São Tomé & Príncipe 42.2 -0.242% 5
Suriname Suriname 1.21 -0.222% 64
Slovakia Slovakia 0 104
Slovenia Slovenia 0 104
Sweden Sweden 0 104
Eswatini Eswatini 0.227 -4.01% 75
Seychelles Seychelles 0 104
Turks & Caicos Islands Turks & Caicos Islands 0.0138 -3.45% 99
Chad Chad 62.6 -0.28% 2
Togo Togo 39.5 -2.48% 6
Thailand Thailand 0.0306 +1.39% 97
Tajikistan Tajikistan 0.317 -0.335% 73
Turkmenistan Turkmenistan 0 104
Timor-Leste Timor-Leste 10.4 -10.9% 31
Tonga Tonga 0.0903 -5.53% 90
Trinidad & Tobago Trinidad & Tobago 0 104
Tunisia Tunisia 0.148 -5.07% 81
Turkey Turkey 0.149 -1.91% 80
Tuvalu Tuvalu 2.62 -9.08% 57
Tanzania Tanzania 6.32 -3.7% 45
Uganda Uganda 3.82 -9.87% 54
Ukraine Ukraine 0 104
Uruguay Uruguay 0.152 +0.0889% 78
United States United States 0 104
Uzbekistan Uzbekistan 0.0495 -0.0787% 95
U.S. Virgin Islands U.S. Virgin Islands 0 104
Vietnam Vietnam 0 -100% 104
Vanuatu Vanuatu 0.0558 -4.12% 94
Samoa Samoa 0.128 +3.43% 83
Yemen Yemen 8.57 -0.936% 34
South Africa South Africa 0.149 -34.5% 79
Zambia Zambia 6.41 -0.912% 44
Zimbabwe Zimbabwe 17.3 -0.136% 20

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.STA.ODFC.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.STA.ODFC.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))