Other manufacturing (% of value added in manufacturing)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Albania Albania -95.9 +12.5% 43
United Arab Emirates United Arab Emirates 74.4 -4.64% 4
Argentina Argentina 39.8 +4.17% 15
Armenia Armenia -67.9 +42.2% 36
Australia Australia 21.5 +3.6% 21
Austria Austria -322 +12.6% 75
Azerbaijan Azerbaijan -241 +20% 68
Belgium Belgium -172 -14.9% 56
Bulgaria Bulgaria -114 +13.8% 48
Bosnia & Herzegovina Bosnia & Herzegovina -129 +24.3% 51
Belarus Belarus -57.4 -68.6% 31
Brazil Brazil 50.3 -14.1% 12
Botswana Botswana 7.69 +88.4% 23
Canada Canada 50.5 -5.72% 11
Switzerland Switzerland -181 +32.1% 58
China China -673 +28.9% 89
Côte d’Ivoire Côte d’Ivoire -61.4 +2,867% 33
Colombia Colombia -84.7 +22.1% 40
Cyprus Cyprus -76 +19.1% 37
Czechia Czechia -298 -14.6% 74
Germany Germany -452 +2.54% 80
Denmark Denmark -158 -8.03% 55
Ecuador Ecuador -59.1 -221% 32
Spain Spain -210 +11.8% 62
Estonia Estonia -234 +19.6% 66
Finland Finland -204 +19.5% 61
Fiji Fiji -88.7 -33.9% 41
France France -218 +12.6% 64
United Kingdom United Kingdom -192 +5.85% 59
Georgia Georgia -65.1 -2.63% 35
Greece Greece -56.3 -2.61% 30
Hong Kong SAR China Hong Kong SAR China -47.6 +4.87% 27
Croatia Croatia -99 +4.52% 44
Hungary Hungary -542 +3.11% 85
Indonesia Indonesia 58.7 -2.33% 7
India India -62.6 +98.5% 34
Ireland Ireland -53.5 +78.7% 28
Iraq Iraq 56.5 +15% 8
Iceland Iceland -103 +103% 45
Italy Italy -256 +23.3% 71
Jordan Jordan -247 +41.5% 69
Japan Japan -115 -17.1% 49
Kazakhstan Kazakhstan -521 +8.46% 83
Kyrgyzstan Kyrgyzstan -529 +53.4% 84
South Korea South Korea 64.2 +0.0319% 5
Kuwait Kuwait 61.8 0.00000% 6
Lithuania Lithuania -174 +23% 57
Luxembourg Luxembourg -7.85 -63.1% 25
Latvia Latvia -200 +22.8% 60
Macao SAR China Macao SAR China 45.6 +7.22% 14
Morocco Morocco 11.3 -60.8% 22
Moldova Moldova -109 -26.5% 47
Madagascar Madagascar 30.2 +0.885% 20
Marshall Islands Marshall Islands 1.89 +0.00010% 24
North Macedonia North Macedonia -457 +85% 81
Malta Malta -262 -29.4% 72
Myanmar (Burma) Myanmar (Burma) 96.7 -1.7% 1
Mongolia Mongolia 34.6 -18.1% 17
Mauritius Mauritius -77.4 +102% 38
Namibia Namibia -35.6 -49.3% 26
Nicaragua Nicaragua 36 -12.1% 16
Netherlands Netherlands -211 +23.6% 63
Norway Norway -53.6 -35.3% 29
New Zealand New Zealand -398 +6.06% 79
Panama Panama 34.2 -1.45% 18
Peru Peru -235 +23.5% 67
Philippines Philippines -155 -1.58% 53
Poland Poland -219 +21.9% 65
Puerto Rico Puerto Rico -2,005 -14.7% 90
Portugal Portugal -250 +55.9% 70
Paraguay Paraguay 31.1 -26.1% 19
Qatar Qatar -89.7 +41.8% 42
Romania Romania -393 +26% 78
Russia Russia -286 +0.403% 73
Rwanda Rwanda -581 +8.07% 86
Senegal Senegal 84.9 -32.9% 2
Singapore Singapore 79.8 +1.28% 3
Serbia Serbia -126 +20.6% 50
Slovakia Slovakia -587 +90.3% 87
Slovenia Slovenia -370 +41.7% 77
Sweden Sweden -468 +43.1% 82
Thailand Thailand 53.1 -10.4% 10
Turkey Turkey -359 +55.9% 76
Tanzania Tanzania -134 +0.000102% 52
Ukraine Ukraine -82.1 -8.27% 39
Uruguay Uruguay -156 +16.8% 54
United States United States 47.7 -4.05% 13
Uzbekistan Uzbekistan -618 +167% 88
Vietnam Vietnam -108 +23% 46
South Africa South Africa 54.4 0.00000% 9

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.MNF.OTHR.ZS.UN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.MNF.OTHR.ZS.UN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))