Oil rents (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0 115
Afghanistan Afghanistan 0.0179 +245% 93
Angola Angola 28.3 +52.2% 4
Albania Albania 1.04 +79% 40
United Arab Emirates United Arab Emirates 15.7 +49.4% 11
Argentina Argentina 1.54 +128% 37
Armenia Armenia 0 115
American Samoa American Samoa 0 115
Antigua & Barbuda Antigua & Barbuda 0 115
Australia Australia 0.264 +144% 65
Austria Austria 0.0378 +119% 83
Azerbaijan Azerbaijan 21 +88.2% 8
Burundi Burundi 0 115
Belgium Belgium 0.0313 +112% 86
Benin Benin 0 -100% 115
Burkina Faso Burkina Faso 0 115
Bangladesh Bangladesh 0.0316 +91.6% 85
Bulgaria Bulgaria 0.0194 +100% 92
Bahrain Bahrain 10.9 +63.4% 17
Bahamas Bahamas 0 115
Bosnia & Herzegovina Bosnia & Herzegovina 0 115
Belarus Belarus 0.814 +123% 43
Belize Belize 0.28 +107% 62
Bermuda Bermuda 0 115
Bolivia Bolivia 1.26 +154% 39
Brazil Brazil 2.6 +141% 31
Barbados Barbados 0.309 +161% 57
Brunei Brunei 10.4 +200% 18
Bhutan Bhutan 0 115
Botswana Botswana 0 115
Central African Republic Central African Republic 0 115
Canada Canada 2.83 +218% 29
Switzerland Switzerland 0.000512 +122% 110
Chile Chile 0.0127 +72.8% 97
China China 0.309 +170% 58
Côte d’Ivoire Côte d’Ivoire 0.7 +88.6% 45
Cameroon Cameroon 2.36 +84.4% 32
Congo - Kinshasa Congo - Kinshasa 0.65 +81.1% 47
Congo - Brazzaville Congo - Brazzaville 34.4 +53.4% 3
Colombia Colombia 3.42 +119% 26
Comoros Comoros 0 115
Cape Verde Cape Verde 0 115
Costa Rica Costa Rica 0.00897 +162% 103
Cayman Islands Cayman Islands 0 115
Cyprus Cyprus 0 115
Czechia Czechia 0.00966 +90.4% 102
Germany Germany 0.014 +109% 96
Djibouti Djibouti 0 115
Dominica Dominica 0 115
Denmark Denmark 0.27 +97.2% 64
Dominican Republic Dominican Republic 0 115
Algeria Algeria 14.5 +60% 16
Ecuador Ecuador 6.4 +150% 21
Egypt Egypt 2.99 +60.7% 28
Spain Spain 0.000151 -48.8% 112
Estonia Estonia 0.962 +100% 41
Ethiopia Ethiopia 0 115
Finland Finland 0.0456 +119% 80
Fiji Fiji 0 115
France France 0.0071 +115% 104
Faroe Islands Faroe Islands 0 115
Gabon Gabon 15.6 +55.9% 12
United Kingdom United Kingdom 0.416 +73.2% 52
Georgia Georgia 0.0293 +87.5% 87
Ghana Ghana 4.06 +80% 25
Guinea Guinea 0 115
Gambia Gambia 0 115
Guinea-Bissau Guinea-Bissau 0 115
Equatorial Guinea Equatorial Guinea 14.9 +38.9% 14
Greece Greece 0.0117 +79.2% 99
Grenada Grenada 0 115
Guatemala Guatemala 0.118 +122% 69
Guam Guam 0 115
Guyana Guyana 22.1 +199% 7
Hong Kong SAR China Hong Kong SAR China 0.000356 +197% 111
Honduras Honduras 0.00101 +127% 108
Croatia Croatia 0.28 +98.7% 61
Haiti Haiti 0 115
Hungary Hungary 0.184 +121% 67
Indonesia Indonesia 0.766 +167% 44
India India 0.326 +126% 56
Ireland Ireland 0.00194 +102% 106
Iran Iran 18.3 +37.6% 9
Iraq Iraq 42.8 +58.3% 2
Iceland Iceland 0 115
Israel Israel 0.0115 +51.4% 100
Italy Italy 0.077 +93.2% 74
Jamaica Jamaica 0.295 +156% 59
Jordan Jordan 0.0144 +2,971% 95
Japan Japan 0.00223 +214% 105
Kazakhstan Kazakhstan 14.8 +108% 15
Kenya Kenya 0 115
Kyrgyzstan Kyrgyzstan 0.0824 +60.1% 72
Cambodia Cambodia 0.041 +29,910% 82
Kiribati Kiribati 0 115
St. Kitts & Nevis St. Kitts & Nevis 0 115
South Korea South Korea 0.0283 +215% 88
Laos Laos 0 115
Lebanon Lebanon 0 115
Liberia Liberia 0 115
Libya Libya 56.4 +510% 1
St. Lucia St. Lucia 0 115
Sri Lanka Sri Lanka 0 115
Lesotho Lesotho 0 115
Lithuania Lithuania 0.0159 +88.9% 94
Luxembourg Luxembourg 0 115
Latvia Latvia 0.0654 +108% 76
Macao SAR China Macao SAR China 0 115
Morocco Morocco 0.00101 +20.4% 109
Moldova Moldova 0.0117 +89.1% 98
Madagascar Madagascar 0.0838 +69.4% 71
Maldives Maldives 0 115
Mexico Mexico 2.07 +138% 33
North Macedonia North Macedonia 0 115
Mali Mali 0 115
Malta Malta 0 115
Myanmar (Burma) Myanmar (Burma) 0.0628 +142% 77
Montenegro Montenegro 0 115
Mongolia Mongolia 1.5 +164% 38
Mozambique Mozambique 0.0793 +67.5% 73
Mauritania Mauritania 0 115
Mauritius Mauritius 0 115
Malawi Malawi 0 115
Malaysia Malaysia 1.85 +169% 35
Namibia Namibia 0 115
New Caledonia New Caledonia 0 115
Niger Niger 0.623 +58.1% 48
Nigeria Nigeria 6.25 +88.6% 22
Nicaragua Nicaragua 0.0206 +144% 91
Netherlands Netherlands 0.0244 +119% 90
Norway Norway 6.06 +87.7% 23
Nepal Nepal 0 115
Nauru Nauru 0 115
New Zealand New Zealand 0.102 +133% 70
Oman Oman 23.5 +57% 6
Pakistan Pakistan 0.38 +138% 54
Panama Panama 0 115
Peru Peru 0.249 +138% 66
Philippines Philippines 0.0342 +184% 84
Papua New Guinea Papua New Guinea 1.88 +164% 34
Poland Poland 0.0414 +99.6% 81
Puerto Rico Puerto Rico 0 115
Portugal Portugal 0.0518 +116% 78
Paraguay Paraguay 0.073 +144% 75
Palestinian Territories Palestinian Territories 0 115
French Polynesia French Polynesia 0 115
Qatar Qatar 15.3 +44.2% 13
Romania Romania 0.378 +106% 55
Russia Russia 9.67 +105% 19
Rwanda Rwanda 0 115
Saudi Arabia Saudi Arabia 23.7 +48.2% 5
Sudan Sudan 3.3 +76.1% 27
Senegal Senegal 0 115
Singapore Singapore 0 115
Solomon Islands Solomon Islands 0 115
Sierra Leone Sierra Leone 0 115
El Salvador El Salvador 0.00015 +132% 113
Somalia Somalia 0 115
Serbia Serbia 0.424 +98.4% 51
São Tomé & Príncipe São Tomé & Príncipe 0 115
Suriname Suriname 7.93 +165% 20
Slovakia Slovakia 0.00176 +259% 107
Slovenia Slovenia 0.0000 +108% 114
Sweden Sweden 0.0272 +106% 89
Eswatini Eswatini 0 115
Seychelles Seychelles 0 115
Turks & Caicos Islands Turks & Caicos Islands 0 115
Chad Chad 16.8 +81.5% 10
Togo Togo 0 115
Thailand Thailand 0.482 +177% 50
Tajikistan Tajikistan 0.287 +132% 60
Timor-Leste Timor-Leste 5.3 +89.7% 24
Tonga Tonga 0 115
Trinidad & Tobago Trinidad & Tobago 2.71 +89.6% 30
Tunisia Tunisia 1.55 +69% 36
Turkey Turkey 0.138 +125% 68
Tanzania Tanzania 0 115
Uganda Uganda 0 115
Ukraine Ukraine 0.28 +46.2% 63
Uruguay Uruguay 0.00972 +145% 101
United States United States 0.611 +226% 49
Uzbekistan Uzbekistan 0.867 +119% 42
St. Vincent & Grenadines St. Vincent & Grenadines 0 115
Vietnam Vietnam 0.669 +176% 46
Vanuatu Vanuatu 0 115
Samoa Samoa 0 115
Kosovo Kosovo 0 115
South Africa South Africa 0.396 +85.9% 53
Zambia Zambia 0 115
Zimbabwe Zimbabwe 0.0478 +64% 79

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GDP.PETR.RT.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GDP.PETR.RT.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))