Number of under-five deaths

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 80,507 -2.66% 13
Angola Angola 85,579 -1.84% 10
Albania Albania 273 -2.5% 139
Andorra Andorra 1 0% 186
United Arab Emirates United Arab Emirates 496 -0.201% 122
Argentina Argentina 4,920 -5.26% 72
Armenia Armenia 348 -5.95% 131
Antigua & Barbuda Antigua & Barbuda 10 -9.09% 181
Australia Australia 1,113 -1.33% 108
Austria Austria 251 -7.38% 142
Azerbaijan Azerbaijan 2,443 -8.5% 91
Burundi Burundi 22,339 -2.5% 41
Belgium Belgium 393 -8.18% 129
Benin Benin 36,395 -2.14% 30
Burkina Faso Burkina Faso 55,356 -3.02% 23
Bangladesh Bangladesh 105,531 +0.71% 7
Bulgaria Bulgaria 382 +0.526% 130
Bahrain Bahrain 171 +2.4% 154
Bahamas Bahamas 55 -1.79% 167
Bosnia & Herzegovina Bosnia & Herzegovina 151 -5.63% 155
Belarus Belarus 177 -13.7% 151
Belize Belize 92 +4.55% 161
Bolivia Bolivia 5,993 -3.53% 70
Brazil Brazil 38,010 -2.48% 29
Barbados Barbados 32 -3.03% 172
Brunei Brunei 59 -1.67% 165
Bhutan Bhutan 229 -3.38% 144
Botswana Botswana 2,415 -2.46% 92
Central African Republic Central African Republic 20,141 -78.7% 44
Canada Canada 1,808 -2.11% 99
Switzerland Switzerland 328 -3.24% 133
Chile Chile 1,320 +4.18% 105
China China 62,190 -14.7% 21
Côte d’Ivoire Côte d’Ivoire 65,790 -2.27% 17
Cameroon Cameroon 63,046 -2.27% 20
Congo - Kinshasa Congo - Kinshasa 306,481 -0.876% 4
Congo - Brazzaville Congo - Brazzaville 7,520 -2.12% 62
Colombia Colombia 8,500 -3.62% 59
Comoros Comoros 961 -2.73% 112
Cape Verde Cape Verde 75 -5.06% 164
Costa Rica Costa Rica 553 +1.47% 121
Cuba Cuba 806 +2.41% 116
Cyprus Cyprus 52 +1.96% 168
Czechia Czechia 249 -11.7% 143
Germany Germany 2,675 -4.36% 89
Djibouti Djibouti 1,198 -3.15% 107
Dominica Dominica 26 0% 173
Denmark Denmark 200 -6.1% 147
Dominican Republic Dominican Republic 6,396 -3.41% 66
Algeria Algeria 20,295 -3.99% 43
Ecuador Ecuador 3,581 -2.95% 79
Egypt Egypt 41,799 -2.27% 27
Eritrea Eritrea 3,439 -2.25% 82
Spain Spain 1,059 -1.4% 110
Estonia Estonia 25 -10.7% 174
Ethiopia Ethiopia 187,237 -2.33% 5
Finland Finland 102 -6.42% 159
Fiji Fiji 488 -0.611% 123
France France 2,899 -3.08% 88
Micronesia (Federated States of) Micronesia (Federated States of) 58 -3.33% 166
Gabon Gabon 2,273 -2.57% 94
United Kingdom United Kingdom 3,073 -0.614% 87
Georgia Georgia 409 -7.05% 128
Ghana Ghana 32,579 -3.34% 32
Guinea Guinea 45,350 -1.88% 26
Gambia Gambia 3,556 -2.28% 80
Guinea-Bissau Guinea-Bissau 4,404 -2.52% 73
Equatorial Guinea Equatorial Guinea 3,801 -3.04% 77
Greece Greece 282 -9.03% 137
Grenada Grenada 25 -3.85% 174
Guatemala Guatemala 8,055 -3.67% 61
Guyana Guyana 434 -3.98% 126
Honduras Honduras 3,605 -2.8% 78
Croatia Croatia 149 -6.29% 157
Haiti Haiti 14,233 -3.53% 50
Hungary Hungary 336 -5.88% 132
Indonesia Indonesia 92,839 -3.79% 8
India India 643,970 -4.91% 2
Ireland Ireland 205 -2.84% 146
Iran Iran 13,987 -5.19% 51
Iraq Iraq 25,947 -2.22% 36
Iceland Iceland 11 -8.33% 180
Israel Israel 588 -2.33% 120
Italy Italy 1,089 -4.72% 109
Jamaica Jamaica 643 -1.08% 119
Jordan Jordan 3,108 -2.94% 85
Japan Japan 1,858 -3.78% 97
Kazakhstan Kazakhstan 4,019 -5.86% 74
Kenya Kenya 59,036 -1.97% 22
Kyrgyzstan Kyrgyzstan 2,572 -2.21% 90
Cambodia Cambodia 8,329 -5.16% 60
Kiribati Kiribati 188 -3.09% 149
St. Kitts & Nevis St. Kitts & Nevis 9 -10% 182
South Korea South Korea 694 -7.96% 117
Kuwait Kuwait 428 +3.13% 127
Laos Laos 6,350 -4.11% 67
Lebanon Lebanon 1,723 +4.42% 101
Liberia Liberia 12,129 -1.79% 53
Libya Libya 3,974 +194% 75
St. Lucia St. Lucia 32 0% 172
Sri Lanka Sri Lanka 1,989 -4.47% 96
Lesotho Lesotho 3,260 -4.79% 83
Lithuania Lithuania 75 -5.06% 164
Luxembourg Luxembourg 16 0% 178
Latvia Latvia 46 -14.8% 169
Morocco Morocco 10,483 -4.63% 54
Monaco Monaco 1 0% 186
Moldova Moldova 482 -3.6% 124
Madagascar Madagascar 63,429 -0.0866% 19
Maldives Maldives 34 -5.56% 171
Mexico Mexico 25,584 -4.29% 37
Marshall Islands Marshall Islands 25 -7.41% 174
North Macedonia North Macedonia 59 -25.3% 165
Mali Mali 83,597 -0.903% 11
Malta Malta 23 -4.17% 176
Myanmar (Burma) Myanmar (Burma) 35,008 -4% 31
Montenegro Montenegro 18 -5.26% 177
Mongolia Mongolia 915 -5.28% 114
Mozambique Mozambique 75,675 -2.34% 16
Mauritania Mauritania 6,402 -1.75% 65
Mauritius Mauritius 183 -6.15% 150
Malawi Malawi 24,893 -2.56% 38
Malaysia Malaysia 3,523 +0.285% 81
Namibia Namibia 3,085 -2.62% 86
Niger Niger 119,782 +0.677% 6
Nigeria Nigeria 768,479 -2.17% 1
Nicaragua Nicaragua 1,780 -3.99% 100
Netherlands Netherlands 675 -3.85% 118
Norway Norway 122 -3.17% 158
Nepal Nepal 15,282 -4.27% 48
Nauru Nauru 3 0% 185
New Zealand New Zealand 276 -2.13% 138
Oman Oman 851 -0.351% 115
Pakistan Pakistan 397,325 -2.68% 3
Panama Panama 952 -4.51% 113
Peru Peru 8,536 -2.33% 58
Philippines Philippines 49,616 -2.14% 25
Palau Palau 4 -20% 184
Papua New Guinea Papua New Guinea 10,262 -3.32% 56
Poland Poland 1,393 -3.2% 103
North Korea North Korea 6,196 +0.814% 68
Portugal Portugal 269 +2.28% 140
Paraguay Paraguay 2,332 -3.68% 93
Palestinian Territories Palestinian Territories 3,856 +86.1% 76
Qatar Qatar 175 +2.34% 153
Romania Romania 1,230 -0.646% 106
Russia Russia 6,036 -9.53% 69
Rwanda Rwanda 15,705 -1.6% 47
Saudi Arabia Saudi Arabia 3,201 -1.14% 84
Sudan Sudan 82,559 -1.52% 12
Senegal Senegal 19,997 -3.08% 45
Singapore Singapore 96 -2.04% 160
Solomon Islands Solomon Islands 437 -2.24% 125
Sierra Leone Sierra Leone 23,993 -2.98% 39
El Salvador El Salvador 1,041 -4.41% 111
San Marino San Marino 0 187
Somalia Somalia 78,874 -26.6% 15
Serbia Serbia 319 -3.33% 135
South Sudan South Sudan 31,441 +1.04% 33
São Tomé & Príncipe São Tomé & Príncipe 89 -3.26% 162
Suriname Suriname 176 -3.3% 152
Slovakia Slovakia 323 -2.42% 134
Slovenia Slovenia 41 -4.65% 170
Sweden Sweden 256 -6.91% 141
Eswatini Eswatini 1,333 -3.34% 104
Seychelles Seychelles 25 0% 174
Syria Syria 10,134 +3.94% 57
Turks & Caicos Islands Turks & Caicos Islands 3 0% 185
Chad Chad 78,937 -0.283% 14
Togo Togo 16,559 -2.29% 46
Thailand Thailand 5,526 -4.81% 71
Tajikistan Tajikistan 7,457 -1.97% 63
Turkmenistan Turkmenistan 6,483 -3.93% 64
Timor-Leste Timor-Leste 1,526 -3.17% 102
Tonga Tonga 24 -4% 175
Trinidad & Tobago Trinidad & Tobago 311 -4.6% 136
Tunisia Tunisia 2,221 -8.19% 95
Turkey Turkey 14,251 +30% 49
Tuvalu Tuvalu 5 0% 183
Tanzania Tanzania 89,057 -2.23% 9
Uganda Uganda 65,043 -2.67% 18
Ukraine Ukraine 1,823 -22.4% 98
Uruguay Uruguay 226 -3.83% 145
United States United States 23,989 -0.299% 40
Uzbekistan Uzbekistan 12,382 -1.62% 52
St. Vincent & Grenadines St. Vincent & Grenadines 13 -7.14% 179
Venezuela Venezuela 10,365 -0.965% 55
British Virgin Islands British Virgin Islands 4 0% 184
Vietnam Vietnam 28,553 -4.04% 35
Vanuatu Vanuatu 150 -2.6% 156
Samoa Samoa 88 -4.35% 163
Kosovo Kosovo 190 -6.86% 148
Yemen Yemen 53,148 -1.56% 24
South Africa South Africa 40,976 +0.919% 28
Zambia Zambia 29,963 -2.7% 34
Zimbabwe Zimbabwe 21,755 -3.03% 42

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DTH.MORT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DTH.MORT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))