Number of deaths ages 5-9 years

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 3,323 -1.69% 32
Angola Angola 9,553 -1.4% 11
Albania Albania 26 -7.14% 134
Andorra Andorra 0 156
United Arab Emirates United Arab Emirates 85 -2.3% 114
Argentina Argentina 636 +2.25% 66
Armenia Armenia 41 0% 125
Antigua & Barbuda Antigua & Barbuda 1 0% 155
Australia Australia 119 -1.65% 106
Austria Austria 30 0% 131
Azerbaijan Azerbaijan 242 -3.59% 91
Burundi Burundi 4,198 -3.07% 27
Belgium Belgium 42 -2.33% 124
Benin Benin 4,791 -0.766% 22
Burkina Faso Burkina Faso 3,296 -4.55% 34
Bangladesh Bangladesh 7,801 -4.12% 17
Bulgaria Bulgaria 49 -2% 120
Bahrain Bahrain 19 0% 138
Bahamas Bahamas 5 0% 151
Bosnia & Herzegovina Bosnia & Herzegovina 14 0% 143
Belarus Belarus 52 -8.77% 119
Belize Belize 9 0% 147
Bolivia Bolivia 444 -3.27% 72
Brazil Brazil 2,983 -0.996% 36
Barbados Barbados 2 0% 154
Brunei Brunei 7 0% 149
Bhutan Bhutan 28 -6.67% 133
Botswana Botswana 141 -3.42% 103
Central African Republic Central African Republic 1,952 -90.8% 45
Canada Canada 169 0% 98
Switzerland Switzerland 29 0% 132
Chile Chile 141 -1.4% 103
China China 15,075 -4.81% 6
Côte d’Ivoire Côte d’Ivoire 7,889 -0.942% 16
Cameroon Cameroon 9,365 -0.605% 13
Congo - Kinshasa Congo - Kinshasa 32,364 -0.157% 3
Congo - Brazzaville Congo - Brazzaville 529 -2.94% 69
Colombia Colombia 805 -0.74% 62
Comoros Comoros 70 -2.78% 115
Cape Verde Cape Verde 9 0% 147
Costa Rica Costa Rica 44 -2.22% 123
Cuba Cuba 118 0% 107
Cyprus Cyprus 7 0% 149
Czechia Czechia 47 +2.17% 122
Germany Germany 328 +5.13% 81
Djibouti Djibouti 154 -3.75% 102
Dominica Dominica 0 156
Denmark Denmark 17 0% 140
Dominican Republic Dominican Republic 291 -3% 86
Algeria Algeria 1,470 -0.339% 51
Ecuador Ecuador 435 +0.928% 73
Egypt Egypt 4,608 -2.93% 24
Eritrea Eritrea 295 -3.91% 85
Spain Spain 154 -1.28% 102
Estonia Estonia 7 0% 149
Ethiopia Ethiopia 12,661 -1.93% 8
Finland Finland 19 0% 138
Fiji Fiji 38 -2.56% 127
France France 283 -2.08% 87
Micronesia (Federated States of) Micronesia (Federated States of) 7 0% 149
Gabon Gabon 281 -1.4% 88
United Kingdom United Kingdom 242 -4.35% 91
Georgia Georgia 39 -7.14% 126
Ghana Ghana 4,775 -2.79% 23
Guinea Guinea 4,406 -1.3% 26
Gambia Gambia 358 -3.76% 78
Guinea-Bissau Guinea-Bissau 371 -2.88% 77
Equatorial Guinea Equatorial Guinea 382 -2.55% 74
Greece Greece 29 -9.38% 132
Grenada Grenada 3 0% 153
Guatemala Guatemala 585 -2.01% 68
Guyana Guyana 22 -4.35% 137
Honduras Honduras 375 -2.6% 76
Croatia Croatia 25 -21.9% 135
Haiti Haiti 1,317 -3.09% 54
Hungary Hungary 41 -2.38% 125
Indonesia Indonesia 12,020 -4.56% 9
India India 36,162 -8.23% 2
Ireland Ireland 17 -5.56% 140
Iran Iran 2,335 -3.11% 41
Iraq Iraq 2,592 -4.14% 38
Iceland Iceland 0 156
Israel Israel 67 0% 116
Italy Italy 161 +2.55% 99
Jamaica Jamaica 56 -1.75% 118
Jordan Jordan 87 -10.3% 113
Japan Japan 339 -3.14% 80
Kazakhstan Kazakhstan 494 +0.407% 70
Kenya Kenya 3,540 -5.47% 30
Kyrgyzstan Kyrgyzstan 202 +0.498% 93
Cambodia Cambodia 865 -2.26% 61
Kiribati Kiribati 18 0% 139
St. Kitts & Nevis St. Kitts & Nevis 0 156
South Korea South Korea 155 -5.49% 101
Kuwait Kuwait 52 0% 119
Laos Laos 381 -3.54% 75
Lebanon Lebanon 198 +0.508% 94
Liberia Liberia 1,235 -2.6% 55
Libya Libya 2,130 +1,292% 42
St. Lucia St. Lucia 3 0% 153
Sri Lanka Sri Lanka 193 -5.39% 95
Lesotho Lesotho 226 -3% 92
Lithuania Lithuania 16 0% 141
Luxembourg Luxembourg 2 0% 154
Latvia Latvia 11 0% 145
Morocco Morocco 1,092 +20% 58
Monaco Monaco 0 156
Moldova Moldova 42 -4.55% 124
Madagascar Madagascar 9,497 +1.38% 12
Maldives Maldives 4 -20% 152
Mexico Mexico 2,374 -17.1% 40
Marshall Islands Marshall Islands 3 0% 153
North Macedonia North Macedonia 12 0% 144
Mali Mali 8,564 -0.638% 14
Malta Malta 2 0% 154
Myanmar (Burma) Myanmar (Burma) 1,803 -3.43% 47
Montenegro Montenegro 3 0% 153
Mongolia Mongolia 115 -7.26% 109
Mozambique Mozambique 4,955 -2.65% 20
Mauritania Mauritania 612 -1.29% 67
Mauritius Mauritius 10 -9.09% 146
Malawi Malawi 3,711 -2.88% 29
Malaysia Malaysia 350 -10.7% 79
Namibia Namibia 279 -4.45% 89
Niger Niger 15,031 -0.325% 7
Nigeria Nigeria 76,308 -2.59% 1
Nicaragua Nicaragua 157 -3.09% 100
Netherlands Netherlands 60 0% 117
Norway Norway 18 -5.26% 139
Nepal Nepal 1,378 -4.37% 53
Nauru Nauru 0 156
New Zealand New Zealand 25 -7.41% 135
Oman Oman 114 +2.7% 110
Pakistan Pakistan 23,611 -2.99% 4
Panama Panama 110 -1.79% 111
Peru Peru 722 -2.7% 63
Philippines Philippines 4,833 -1.53% 21
Palau Palau 0 156
Papua New Guinea Papua New Guinea 1,041 -2.16% 59
Poland Poland 180 +4.05% 96
North Korea North Korea 707 +2.17% 64
Portugal Portugal 34 0% 129
Paraguay Paraguay 116 -1.69% 108
Palestinian Territories Palestinian Territories 2,068 +836% 43
Qatar Qatar 25 +4.17% 135
Romania Romania 124 -8.15% 105
Russia Russia 1,214 -7.68% 56
Rwanda Rwanda 959 -13.8% 60
Saudi Arabia Saudi Arabia 445 -2.63% 71
Sudan Sudan 5,668 -2.17% 19
Senegal Senegal 2,033 -3.92% 44
Singapore Singapore 15 0% 142
Solomon Islands Solomon Islands 48 -4% 121
Sierra Leone Sierra Leone 3,054 -1.8% 35
El Salvador El Salvador 131 -3.68% 104
San Marino San Marino 0 156
Somalia Somalia 8,396 -35.8% 15
Serbia Serbia 35 +2.94% 128
South Sudan South Sudan 4,028 -2.11% 28
São Tomé & Príncipe São Tomé & Príncipe 8 0% 148
Suriname Suriname 17 -10.5% 140
Slovakia Slovakia 33 0% 130
Slovenia Slovenia 6 -14.3% 150
Sweden Sweden 35 0% 128
Eswatini Eswatini 106 -3.64% 112
Seychelles Seychelles 2 0% 154
Syria Syria 1,523 +37.5% 50
Turks & Caicos Islands Turks & Caicos Islands 0 156
Chad Chad 6,678 -0.699% 18
Togo Togo 1,437 -1.84% 52
Thailand Thailand 1,180 -3.2% 57
Tajikistan Tajikistan 246 -3.15% 90
Turkmenistan Turkmenistan 301 -1.63% 83
Timor-Leste Timor-Leste 179 -1.1% 97
Tonga Tonga 3 0% 153
Trinidad & Tobago Trinidad & Tobago 19 0% 138
Tunisia Tunisia 299 -3.86% 84
Turkey Turkey 4,444 +272% 25
Tuvalu Tuvalu 0 156
Tanzania Tanzania 16,012 +0.332% 5
Uganda Uganda 10,162 -1.4% 10
Ukraine Ukraine 302 -39.7% 82
Uruguay Uruguay 30 -3.23% 131
United States United States 2,509 +0.28% 39
Uzbekistan Uzbekistan 1,807 +16.8% 46
St. Vincent & Grenadines St. Vincent & Grenadines 2 0% 154
Venezuela Venezuela 668 -3.61% 65
British Virgin Islands British Virgin Islands 0 156
Vietnam Vietnam 1,652 -8.22% 49
Vanuatu Vanuatu 17 0% 140
Samoa Samoa 7 0% 149
Kosovo Kosovo 23 -8% 136
Yemen Yemen 3,392 -4.72% 31
South Africa South Africa 2,657 -1.34% 37
Zambia Zambia 3,311 -1.93% 33
Zimbabwe Zimbabwe 1,793 -5.03% 48

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DTH.0509'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DTH.0509'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))