Number of deaths ages 20-24 years

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 14,160 +1.27% 12
Angola Angola 10,592 +1.35% 18
Albania Albania 76 -15.6% 153
Andorra Andorra 1 0% 178
United Arab Emirates United Arab Emirates 462 -2.53% 104
Argentina Argentina 3,063 +0.164% 51
Armenia Armenia 122 -8.27% 139
Antigua & Barbuda Antigua & Barbuda 4 0% 175
Australia Australia 644 -5.85% 95
Austria Austria 190 +1.6% 129
Azerbaijan Azerbaijan 516 -5.32% 100
Burundi Burundi 1,876 +4.45% 64
Belgium Belgium 218 -2.24% 122
Benin Benin 2,679 +1.94% 54
Burkina Faso Burkina Faso 4,766 +21.8% 37
Bangladesh Bangladesh 14,108 -0.381% 13
Bulgaria Bulgaria 204 +2% 126
Bahrain Bahrain 46 -9.8% 160
Bahamas Bahamas 41 -4.65% 161
Bosnia & Herzegovina Bosnia & Herzegovina 68 -8.11% 154
Belarus Belarus 192 -2.04% 128
Belize Belize 77 +4.05% 152
Bolivia Bolivia 1,102 -0.452% 79
Brazil Brazil 26,088 -2.29% 6
Barbados Barbados 13 0% 168
Brunei Brunei 20 0% 167
Bhutan Bhutan 95 -2.06% 146
Botswana Botswana 463 -1.07% 103
Central African Republic Central African Republic 2,386 -92.2% 57
Canada Canada 1,598 +1.2% 68
Switzerland Switzerland 136 -2.86% 136
Chile Chile 968 +0.519% 83
China China 38,630 -2.42% 3
Côte d’Ivoire Côte d’Ivoire 4,563 +1.54% 38
Cameroon Cameroon 8,516 +1.65% 21
Congo - Kinshasa Congo - Kinshasa 33,945 +2.74% 4
Congo - Brazzaville Congo - Brazzaville 1,059 +2.02% 81
Colombia Colombia 6,990 +0.0859% 28
Comoros Comoros 63 +1.61% 155
Cape Verde Cape Verde 22 -8.33% 166
Costa Rica Costa Rica 398 +2.84% 109
Cuba Cuba 440 +2.33% 107
Cyprus Cyprus 29 0% 163
Czechia Czechia 241 +4.78% 121
Germany Germany 1,326 -1.7% 75
Djibouti Djibouti 328 +0.306% 115
Dominica Dominica 7 0% 173
Denmark Denmark 114 0% 141
Dominican Republic Dominican Republic 1,519 -1.3% 72
Algeria Algeria 1,954 +3.28% 62
Ecuador Ecuador 3,584 +22.2% 46
Egypt Egypt 8,389 +4.42% 22
Eritrea Eritrea 826 +0.243% 86
Spain Spain 729 +4.74% 90
Estonia Estonia 31 0% 162
Ethiopia Ethiopia 20,752 +1.5% 9
Finland Finland 197 +4.23% 127
Fiji Fiji 88 0% 148
France France 1,634 +2.45% 67
Micronesia (Federated States of) Micronesia (Federated States of) 13 -7.14% 168
Gabon Gabon 241 +0.837% 121
United Kingdom United Kingdom 1,561 -1.7% 70
Georgia Georgia 156 -8.24% 134
Ghana Ghana 4,408 +1.75% 39
Guinea Guinea 4,858 +0.455% 36
Gambia Gambia 502 +0.2% 102
Guinea-Bissau Guinea-Bissau 523 +0.577% 99
Equatorial Guinea Equatorial Guinea 369 +0.272% 111
Greece Greece 175 -3.31% 130
Grenada Grenada 4 0% 175
Guatemala Guatemala 2,945 +2.15% 53
Guyana Guyana 110 -3.51% 142
Honduras Honduras 1,228 -0.647% 77
Croatia Croatia 80 -14.9% 151
Haiti Haiti 2,653 +12.7% 55
Hungary Hungary 211 -2.76% 124
Indonesia Indonesia 21,581 -1.84% 8
India India 120,323 -1.61% 1
Ireland Ireland 103 +1.98% 144
Iran Iran 6,775 -0.265% 29
Iraq Iraq 3,562 +0.678% 47
Iceland Iceland 6 -14.3% 174
Israel Israel 243 +6.58% 120
Italy Italy 835 +1.71% 85
Jamaica Jamaica 353 -1.94% 114
Jordan Jordan 695 -0.572% 92
Japan Japan 2,286 +1.78% 59
Kazakhstan Kazakhstan 916 -2.66% 84
Kenya Kenya 9,837 +2.02% 19
Kyrgyzstan Kyrgyzstan 354 -3.01% 113
Cambodia Cambodia 1,276 -0.468% 76
Kiribati Kiribati 20 -9.09% 167
St. Kitts & Nevis St. Kitts & Nevis 7 0% 173
South Korea South Korea 1,082 -3.65% 80
Kuwait Kuwait 102 -6.42% 145
Laos Laos 997 -1.09% 82
Lebanon Lebanon 374 +2.75% 110
Liberia Liberia 1,543 +2.8% 71
Libya Libya 799 +115% 88
St. Lucia St. Lucia 23 -4.17% 165
Sri Lanka Sri Lanka 810 +0.124% 87
Lesotho Lesotho 286 -7.44% 118
Lithuania Lithuania 91 -2.15% 147
Luxembourg Luxembourg 7 -12.5% 173
Latvia Latvia 54 -1.82% 157
Morocco Morocco 1,842 +7.28% 65
Monaco Monaco 0 179
Moldova Moldova 127 +2.42% 138
Madagascar Madagascar 5,621 +0.25% 33
Maldives Maldives 9 -18.2% 171
Mexico Mexico 14,370 -3.28% 11
Marshall Islands Marshall Islands 4 0% 175
North Macedonia North Macedonia 49 +2.08% 159
Mali Mali 5,556 +1.72% 34
Malta Malta 8 -11.1% 172
Myanmar (Burma) Myanmar (Burma) 7,074 -6.98% 26
Montenegro Montenegro 20 +11.1% 167
Mongolia Mongolia 213 -4.48% 123
Mozambique Mozambique 7,038 +1% 27
Mauritania Mauritania 687 +3.15% 93
Mauritius Mauritius 86 -1.15% 149
Malawi Malawi 4,348 +1.9% 42
Malaysia Malaysia 2,214 +3.31% 60
Namibia Namibia 622 -3.72% 96
Niger Niger 7,500 +3.41% 24
Nigeria Nigeria 41,321 +2.26% 2
Nicaragua Nicaragua 668 -1.91% 94
Netherlands Netherlands 362 +3.43% 112
Norway Norway 128 +2.4% 137
Nepal Nepal 3,278 -2.76% 49
Nauru Nauru 0 -100% 179
New Zealand New Zealand 174 -1.69% 131
Oman Oman 254 +16% 119
Pakistan Pakistan 29,329 +0.407% 5
Panama Panama 421 -1.17% 108
Peru Peru 2,359 -0.464% 58
Philippines Philippines 13,053 +1.75% 17
Palau Palau 4 0% 175
Papua New Guinea Papua New Guinea 1,516 -0.197% 73
Poland Poland 1,106 -3.41% 78
North Korea North Korea 1,934 -1.28% 63
Portugal Portugal 208 +2.97% 125
Paraguay Paraguay 716 -3.11% 91
Palestinian Territories Palestinian Territories 3,331 +866% 48
Qatar Qatar 57 -12.3% 156
Romania Romania 505 -6.48% 101
Russia Russia 14,076 +37.7% 14
Rwanda Rwanda 1,435 +2.21% 74
Saudi Arabia Saudi Arabia 2,563 -0.659% 56
Sudan Sudan 16,960 +19% 10
Senegal Senegal 1,808 +1.74% 66
Singapore Singapore 152 +3.4% 135
Solomon Islands Solomon Islands 83 +1.22% 150
Sierra Leone Sierra Leone 3,004 +1.83% 52
El Salvador El Salvador 740 -5.49% 89
San Marino San Marino 0 179
Somalia Somalia 9,693 -4.47% 20
Serbia Serbia 165 -2.37% 133
South Sudan South Sudan 5,001 +11.4% 35
São Tomé & Príncipe São Tomé & Príncipe 50 +2.04% 158
Suriname Suriname 63 -3.08% 155
Slovakia Slovakia 121 -3.97% 140
Slovenia Slovenia 29 -3.33% 163
Sweden Sweden 243 -0.816% 120
Eswatini Eswatini 316 -1.25% 116
Seychelles Seychelles 6 0% 174
Syria Syria 3,129 +28.6% 50
Turks & Caicos Islands Turks & Caicos Islands 2 0% 177
Chad Chad 6,389 +4.93% 30
Togo Togo 1,580 +1.61% 69
Thailand Thailand 6,261 -2.67% 31
Tajikistan Tajikistan 458 -1.93% 105
Turkmenistan Turkmenistan 561 -5.24% 98
Timor-Leste Timor-Leste 442 +2.08% 106
Tonga Tonga 10 0% 170
Trinidad & Tobago Trinidad & Tobago 171 +12.5% 132
Tunisia Tunisia 568 +0.353% 97
Turkey Turkey 6,090 +72.9% 32
Tuvalu Tuvalu 1 0% 178
Tanzania Tanzania 8,164 +1.55% 23
Uganda Uganda 13,212 +1.66% 16
Ukraine Ukraine 4,302 -11.1% 44
Uruguay Uruguay 296 +1.02% 117
United States United States 21,602 -6.94% 7
Uzbekistan Uzbekistan 2,065 +2.43% 61
St. Vincent & Grenadines St. Vincent & Grenadines 8 -20% 172
Venezuela Venezuela 7,279 +4.28% 25
British Virgin Islands British Virgin Islands 3 0% 176
Vietnam Vietnam 4,147 -0.979% 45
Vanuatu Vanuatu 26 0% 164
Samoa Samoa 12 0% 169
Kosovo Kosovo 104 -2.8% 143
Yemen Yemen 4,383 -12.1% 40
South Africa South Africa 13,610 -1.72% 15
Zambia Zambia 4,370 +1.13% 41
Zimbabwe Zimbabwe 4,331 +3.02% 43

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DTH.2024'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DTH.2024'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))