Nitrous oxide (N2O) emissions (total) excluding LULUCF (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0094 +4.44% 184
Afghanistan Afghanistan 3.56 +0.319% 87
Angola Angola 5.11 +0.456% 67
Albania Albania 0.789 -2.95% 133
United Arab Emirates United Arab Emirates 2.27 +1.54% 102
Argentina Argentina 40 +1.85% 9
Armenia Armenia 0.482 +1.82% 143
American Samoa American Samoa 0.0018 0% 196
Antigua & Barbuda Antigua & Barbuda 0.0118 0% 182
Australia Australia 47.4 +1.13% 8
Austria Austria 3.16 -1.38% 91
Azerbaijan Azerbaijan 2.22 +1.87% 103
Burundi Burundi 1.13 +0.953% 125
Belgium Belgium 7.67 -3.61% 51
Benin Benin 1.98 +3.35% 109
Burkina Faso Burkina Faso 6.71 +1.7% 57
Bangladesh Bangladesh 26.5 +1.49% 19
Bulgaria Bulgaria 3.78 -1.76% 84
Bahrain Bahrain 0.2 +1.78% 159
Bahamas Bahamas 0.0458 +5.53% 170
Bosnia & Herzegovina Bosnia & Herzegovina 1.19 -2.79% 123
Belarus Belarus 9.43 +0.283% 46
Belize Belize 0.129 +6.19% 164
Bermuda Bermuda 0.0078 +4% 188
Bolivia Bolivia 6.77 +4.31% 56
Brazil Brazil 166 +0.587% 4
Barbados Barbados 0.0366 +1.67% 174
Brunei Brunei 0.481 +6.74% 144
Bhutan Bhutan 0.183 -0.109% 161
Botswana Botswana 1.52 +9.95% 116
Central African Republic Central African Republic 4.06 -14.3% 82
Canada Canada 33.5 +5.09% 14
Switzerland Switzerland 2.08 +1.9% 107
Chile Chile 7.53 +0.861% 53
China China 415 +1.87% 1
Côte d’Ivoire Côte d’Ivoire 2.93 +2.16% 97
Cameroon Cameroon 4.59 -0.323% 74
Congo - Kinshasa Congo - Kinshasa 5.87 -3.56% 62
Congo - Brazzaville Congo - Brazzaville 0.62 -7.78% 138
Colombia Colombia 20.4 +0.603% 25
Comoros Comoros 0.0561 +0.179% 168
Cape Verde Cape Verde 0.0694 -0.715% 166
Costa Rica Costa Rica 1.74 +0.584% 112
Cuba Cuba 4.74 -1.05% 70
Cayman Islands Cayman Islands 0.008 +3.9% 187
Cyprus Cyprus 0.296 +0.957% 151
Czechia Czechia 6 -5.43% 61
Germany Germany 30.2 -3.83% 16
Djibouti Djibouti 0.208 -0.0962% 157
Dominica Dominica 0.0112 +0.901% 183
Denmark Denmark 4.47 -2.26% 76
Dominican Republic Dominican Republic 2.83 +1.47% 98
Algeria Algeria 6.28 -0.276% 59
Ecuador Ecuador 4.44 +1.24% 77
Egypt Egypt 19.3 -0.988% 27
Eritrea Eritrea 1.27 +0.476% 121
Spain Spain 18.5 -3.75% 29
Estonia Estonia 0.875 -1.89% 131
Ethiopia Ethiopia 39 +2.18% 10
Finland Finland 4.68 -5.02% 73
Fiji Fiji 0.193 +0.312% 160
France France 30.4 -1.66% 15
Faroe Islands Faroe Islands 0.0077 0% 189
Micronesia (Federated States of) Micronesia (Federated States of) 0.0124 +1.64% 181
Gabon Gabon 0.42 -1.66% 146
United Kingdom United Kingdom 20.8 -2.06% 24
Georgia Georgia 1.64 +3.1% 113
Ghana Ghana 3.41 -0.717% 89
Gibraltar Gibraltar 0.0089 +2.3% 185
Guinea Guinea 4.2 +2.7% 79
Gambia Gambia 0.212 -2.12% 156
Guinea-Bissau Guinea-Bissau 0.517 -1.41% 140
Equatorial Guinea Equatorial Guinea 0.0494 +0.203% 169
Greece Greece 3.15 -3.03% 92
Grenada Grenada 0.008 +1.27% 187
Greenland Greenland 0.0074 0% 190
Guatemala Guatemala 4.73 +2.24% 72
Guam Guam 0.0035 0% 194
Guyana Guyana 1.47 +3.57% 118
Hong Kong SAR China Hong Kong SAR China 0.48 +7.83% 145
Honduras Honduras 2.34 +2.57% 100
Croatia Croatia 2.2 -0.738% 105
Haiti Haiti 1.41 +0.0213% 119
Hungary Hungary 4.94 +7.37% 68
Indonesia Indonesia 78.9 +2.26% 5
India India 270 +2.63% 2
Ireland Ireland 7.04 -0.634% 54
Iran Iran 29.8 +1.85% 17
Iraq Iraq 5.85 +1.82% 63
Iceland Iceland 0.294 -0.676% 152
Israel Israel 2.56 +0.153% 99
Italy Italy 14.1 -0.761% 36
Jamaica Jamaica 0.302 +1.41% 150
Jordan Jordan 1.09 +1.18% 126
Japan Japan 15.8 -3.13% 32
Kazakhstan Kazakhstan 15.3 -1.17% 34
Kenya Kenya 17.3 +4.01% 30
Kyrgyzstan Kyrgyzstan 1.96 +0.934% 111
Cambodia Cambodia 3.1 -1.23% 94
Kiribati Kiribati 0.007 +1.45% 191
St. Kitts & Nevis St. Kitts & Nevis 0.0074 +7.25% 190
South Korea South Korea 14.3 -1.5% 35
Kuwait Kuwait 1.01 +0.701% 129
Laos Laos 3.14 +11.6% 93
Lebanon Lebanon 0.771 -0.0519% 135
Liberia Liberia 0.402 +1% 148
Libya Libya 1.48 +1.39% 117
St. Lucia St. Lucia 0.0164 +0.613% 180
Sri Lanka Sri Lanka 1.57 -1.64% 115
Lesotho Lesotho 0.397 -5.12% 149
Lithuania Lithuania 3.9 -0.54% 83
Luxembourg Luxembourg 0.224 -1.45% 154
Latvia Latvia 1.63 -1.38% 114
Macao SAR China Macao SAR China 0.0566 +2.35% 167
Morocco Morocco 5.73 +0.247% 65
Moldova Moldova 1.01 +7.97% 128
Madagascar Madagascar 5.15 -2.25% 66
Maldives Maldives 0.0561 +2.56% 168
Mexico Mexico 37.6 +0.832% 11
Marshall Islands Marshall Islands 0.0002 0% 199
North Macedonia North Macedonia 0.403 -2.02% 147
Mali Mali 9.61 +1.81% 45
Malta Malta 0.0382 -1.8% 172
Myanmar (Burma) Myanmar (Burma) 11.9 -5.43% 38
Mongolia Mongolia 8.4 +3.31% 49
Northern Mariana Islands Northern Mariana Islands 0.0002 0% 199
Mozambique Mozambique 4.38 -10.9% 78
Mauritania Mauritania 2.32 +0.834% 101
Mauritius Mauritius 0.171 +0.234% 162
Malawi Malawi 4.17 +6.24% 80
Malaysia Malaysia 10.4 +0.717% 43
Namibia Namibia 2 -0.19% 108
New Caledonia New Caledonia 0.203 +4.91% 158
Niger Niger 10.5 +4.04% 41
Nigeria Nigeria 36.2 +2.33% 12
Nicaragua Nicaragua 3.63 +1.48% 86
Netherlands Netherlands 7.61 -0.56% 52
Norway Norway 3.07 -0.451% 96
Nepal Nepal 6.06 +2.51% 60
Nauru Nauru 0.0004 0% 198
New Zealand New Zealand 10.4 -0.262% 42
Oman Oman 1.18 +2.14% 124
Pakistan Pakistan 59.8 +1.6% 7
Panama Panama 0.986 +1.56% 130
Peru Peru 8.14 +2.47% 50
Philippines Philippines 15.6 +3.11% 33
Palau Palau 0.0283 +2.54% 177
Papua New Guinea Papua New Guinea 0.564 +3.85% 139
Poland Poland 23.8 -4.66% 21
Puerto Rico Puerto Rico 0.681 +2.1% 136
North Korea North Korea 1.96 +2.08% 110
Portugal Portugal 3.08 -2.09% 95
Paraguay Paraguay 6.33 -0.136% 58
French Polynesia French Polynesia 0.0376 +1.62% 173
Qatar Qatar 0.78 +4.39% 134
Romania Romania 10.5 +1.07% 40
Russia Russia 74.3 +1.5% 6
Rwanda Rwanda 1.21 -1.51% 122
Saudi Arabia Saudi Arabia 10.5 +4.36% 39
Sudan Sudan 29.1 +1.12% 18
Senegal Senegal 3.55 +1.67% 88
Singapore Singapore 0.512 -3.77% 141
Solomon Islands Solomon Islands 0.0336 +1.2% 175
Sierra Leone Sierra Leone 0.806 +0.474% 132
El Salvador El Salvador 1.06 +0.827% 127
Somalia Somalia 4.74 -0.362% 71
São Tomé & Príncipe São Tomé & Príncipe 0.0196 +2.62% 179
Suriname Suriname 0.162 +2.15% 163
Slovakia Slovakia 3.27 +1.47% 90
Slovenia Slovenia 0.625 -3.4% 137
Sweden Sweden 4.78 -2.85% 69
Eswatini Eswatini 0.494 +0.653% 142
Seychelles Seychelles 0.0313 +2.96% 176
Syria Syria 3.69 +6.78% 85
Turks & Caicos Islands Turks & Caicos Islands 0.0023 +4.55% 195
Chad Chad 21.2 +4.7% 23
Togo Togo 1.3 +1.49% 120
Thailand Thailand 18.9 -0.652% 28
Tajikistan Tajikistan 2.09 +1.83% 106
Turkmenistan Turkmenistan 5.81 -0.345% 64
Timor-Leste Timor-Leste 0.216 +0.558% 155
Tonga Tonga 0.0254 +0.794% 178
Trinidad & Tobago Trinidad & Tobago 0.25 +0.887% 153
Tunisia Tunisia 2.21 +0.122% 104
Turkey Turkey 34.2 +1.46% 13
Tuvalu Tuvalu 0.0014 0% 197
Tanzania Tanzania 17.3 +1.76% 31
Uganda Uganda 9.71 +0.654% 44
Ukraine Ukraine 22 +4.61% 22
Uruguay Uruguay 6.89 +0.552% 55
United States United States 211 -0.709% 3
Uzbekistan Uzbekistan 13.7 -0.375% 37
St. Vincent & Grenadines St. Vincent & Grenadines 0.0082 0% 186
Venezuela Venezuela 8.93 +0.192% 47
British Virgin Islands British Virgin Islands 0.0041 +2.5% 193
U.S. Virgin Islands U.S. Virgin Islands 0.0049 0% 192
Vietnam Vietnam 25.8 +5.28% 20
Vanuatu Vanuatu 0.078 0% 165
Samoa Samoa 0.0414 -1.43% 171
Yemen Yemen 4.17 +2.16% 81
South Africa South Africa 19.6 +1.05% 26
Zambia Zambia 8.61 +1.37% 48
Zimbabwe Zimbabwe 4.53 +0.809% 75

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))