Nitrous oxide (N2O) emissions from Waste (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0011 0% 180
Afghanistan Afghanistan 0.387 +1.9% 48
Angola Angola 0.299 +2.29% 58
Albania Albania 0.131 +1.24% 99
United Arab Emirates United Arab Emirates 0.155 +2.65% 90
Argentina Argentina 0.889 +1.95% 29
Armenia Armenia 0.0532 +0.949% 130
American Samoa American Samoa 0.0006 +20% 185
Antigua & Barbuda Antigua & Barbuda 0.0014 0% 178
Australia Australia 0.965 +1.19% 27
Austria Austria 0.275 +0.844% 62
Azerbaijan Azerbaijan 0.177 +2.31% 85
Burundi Burundi 0.0935 +3.89% 111
Belgium Belgium 0.295 +0.204% 59
Benin Benin 0.152 +3.06% 93
Burkina Faso Burkina Faso 0.325 +3.7% 54
Bangladesh Bangladesh 1.85 +2.11% 14
Bulgaria Bulgaria 0.108 -1.37% 104
Bahrain Bahrain 0.0091 0% 158
Bahamas Bahamas 0.0056 0% 165
Bosnia & Herzegovina Bosnia & Herzegovina 0.153 +1.26% 91
Belarus Belarus 0.155 +1.11% 89
Belize Belize 0.0145 +2.11% 151
Bermuda Bermuda 0.0009 -10% 182
Bolivia Bolivia 0.148 +1.44% 94
Brazil Brazil 3.56 +1.05% 4
Barbados Barbados 0.0045 +2.27% 168
Brunei Brunei 0.0029 +3.57% 172
Bhutan Bhutan 0.0042 0% 169
Botswana Botswana 0.0318 +2.25% 141
Central African Republic Central African Republic 0.0425 +1.67% 134
Canada Canada 1.12 +2.41% 25
Switzerland Switzerland 0.179 +1.3% 84
Chile Chile 0.989 +1.5% 26
China China 27.4 +1.45% 1
Côte d’Ivoire Côte d’Ivoire 0.303 +3.31% 56
Cameroon Cameroon 0.33 +2.07% 53
Congo - Kinshasa Congo - Kinshasa 0.468 +2.01% 45
Congo - Brazzaville Congo - Brazzaville 0.0552 +2.99% 126
Colombia Colombia 1.64 +2.27% 17
Comoros Comoros 0.008 +1.27% 159
Cape Verde Cape Verde 0.007 +1.45% 162
Costa Rica Costa Rica 0.176 +2.39% 86
Cuba Cuba 0.152 -2.12% 92
Cayman Islands Cayman Islands 0.0007 0% 184
Cyprus Cyprus 0.0255 +2.82% 144
Czechia Czechia 0.264 +3.24% 64
Germany Germany 2.21 +0.404% 8
Djibouti Djibouti 0.0123 +1.65% 155
Dominica Dominica 0.001 0% 181
Denmark Denmark 0.209 +1.56% 74
Dominican Republic Dominican Republic 0.137 +2.79% 98
Algeria Algeria 0.705 +1.91% 34
Ecuador Ecuador 0.196 +1.19% 78
Egypt Egypt 1.94 +1.44% 13
Eritrea Eritrea 0.0552 +2.6% 126
Spain Spain 1.68 +0.599% 16
Estonia Estonia 0.0368 -0.271% 137
Ethiopia Ethiopia 1.48 +2.33% 20
Finland Finland 0.184 +1.71% 80
Fiji Fiji 0.0128 +2.4% 153
France France 1.81 +1.02% 15
Faroe Islands Faroe Islands 0.0009 0% 182
Micronesia (Federated States of) Micronesia (Federated States of) 0.0004 0% 186
Gabon Gabon 0.0294 +1.03% 142
United Kingdom United Kingdom 2.05 +1.18% 12
Georgia Georgia 0.0551 +0.916% 127
Ghana Ghana 0.367 +3.5% 51
Gibraltar Gibraltar 0.0006 0% 185
Guinea Guinea 0.148 +3.28% 95
Gambia Gambia 0.0258 +2.38% 143
Guinea-Bissau Guinea-Bissau 0.0156 +2.63% 149
Equatorial Guinea Equatorial Guinea 0.0114 +2.7% 156
Greece Greece 0.227 +1.21% 70
Grenada Grenada 0.0013 0% 179
Greenland Greenland 0.001 0% 181
Guatemala Guatemala 0.229 +2.32% 68
Guam Guam 0.0007 0% 184
Guyana Guyana 0.0135 +1.5% 152
Hong Kong SAR China Hong Kong SAR China 0.183 +1.95% 81
Honduras Honduras 0.113 +1.99% 103
Croatia Croatia 0.0783 +2.35% 121
Haiti Haiti 0.0881 -0.227% 115
Hungary Hungary 0.199 +1.32% 76
Indonesia Indonesia 3.34 +1.7% 5
India India 16.8 +1.67% 2
Ireland Ireland 0.12 +1.35% 101
Iran Iran 1.21 +0.506% 23
Iraq Iraq 0.497 +3.33% 43
Iceland Iceland 0.0113 +1.8% 157
Israel Israel 0.697 +2.24% 35
Italy Italy 1.37 +0.426% 21
Jamaica Jamaica 0.0369 +0.82% 136
Jordan Jordan 0.1 -1.67% 106
Japan Japan 2.08 -0.498% 11
Kazakhstan Kazakhstan 0.357 +2.74% 52
Kenya Kenya 0.563 +1.57% 40
Kyrgyzstan Kyrgyzstan 0.0924 +1.54% 112
Cambodia Cambodia 0.198 +1.85% 77
Kiribati Kiribati 0.0015 0% 177
St. Kitts & Nevis St. Kitts & Nevis 0.0007 0% 184
South Korea South Korea 1.15 +0.724% 24
Kuwait Kuwait 0.08 +2.3% 120
Laos Laos 0.0976 +1.56% 108
Lebanon Lebanon 0.0922 +0.545% 113
Liberia Liberia 0.0364 +1.96% 138
Libya Libya 0.0944 +1.18% 109
St. Lucia St. Lucia 0.0026 0% 173
Sri Lanka Sri Lanka 0.256 +1.43% 66
Lesotho Lesotho 0.0223 -0.446% 145
Lithuania Lithuania 0.103 +4.91% 105
Luxembourg Luxembourg 0.017 +0.592% 148
Latvia Latvia 0.0543 +0.556% 129
Macao SAR China Macao SAR China 0.0113 0% 157
Morocco Morocco 0.643 +1.2% 37
Moldova Moldova 0.0455 -0.655% 132
Madagascar Madagascar 0.191 +0.738% 79
Maldives Maldives 0.0075 0% 160
Mexico Mexico 2.17 +1.57% 9
Marshall Islands Marshall Islands 0.0002 0% 188
North Macedonia North Macedonia 0.0833 +0.97% 119
Mali Mali 0.286 +2.25% 61
Malta Malta 0.0072 -1.37% 161
Myanmar (Burma) Myanmar (Burma) 0.937 +1.43% 28
Mongolia Mongolia 0.0524 +1.55% 131
Northern Mariana Islands Northern Mariana Islands 0.0002 0% 188
Mozambique Mozambique 0.266 +4.03% 63
Mauritania Mauritania 0.0698 +2.35% 123
Mauritius Mauritius 0.0195 -0.51% 147
Malawi Malawi 0.261 +3.04% 65
Malaysia Malaysia 0.486 +2.08% 44
Namibia Namibia 0.032 +2.56% 140
New Caledonia New Caledonia 0.0047 +2.17% 167
Niger Niger 0.371 +3.6% 50
Nigeria Nigeria 2.16 +2.11% 10
Nicaragua Nicaragua 0.0755 +2.03% 122
Netherlands Netherlands 0.618 +2% 38
Norway Norway 0.13 +0.232% 100
Nepal Nepal 0.412 +2.13% 46
Nauru Nauru 0.0001 0% 189
New Zealand New Zealand 0.118 +3.42% 102
Oman Oman 0.0875 +4.42% 116
Pakistan Pakistan 2.48 +2.3% 7
Panama Panama 0.0654 +2.83% 125
Peru Peru 0.532 +1.95% 42
Philippines Philippines 1.35 +2.94% 22
Palau Palau 0.0001 0% 189
Papua New Guinea Papua New Guinea 0.0985 +1.55% 107
Poland Poland 0.768 +0.392% 33
Puerto Rico Puerto Rico 0.0363 -0.275% 139
North Korea North Korea 0.228 -0.524% 69
Portugal Portugal 0.252 +0.88% 67
Paraguay Paraguay 0.0867 +2.12% 117
French Polynesia French Polynesia 0.0055 +1.85% 166
Qatar Qatar 0.04 +1.52% 135
Romania Romania 0.382 -0.209% 49
Russia Russia 2.54 +0.431% 6
Rwanda Rwanda 0.139 +2.2% 97
Saudi Arabia Saudi Arabia 0.538 +1.43% 41
Sudan Sudan 0.805 +3.35% 31
Senegal Senegal 0.294 +3.63% 60
Singapore Singapore 0.0881 +1.97% 115
Solomon Islands Solomon Islands 0.0059 0% 164
Sierra Leone Sierra Leone 0.0696 +1.9% 124
El Salvador El Salvador 0.0856 +0.824% 118
Somalia Somalia 0.173 +3.54% 87
São Tomé & Príncipe São Tomé & Príncipe 0.0022 +4.76% 174
Suriname Suriname 0.0066 +1.54% 163
Slovakia Slovakia 0.181 +1.57% 82
Slovenia Slovenia 0.0441 +1.38% 133
Sweden Sweden 0.204 +0.99% 75
Eswatini Eswatini 0.0154 +1.99% 150
Seychelles Seychelles 0.0016 0% 176
Syria Syria 0.215 -0.139% 72
Turks & Caicos Islands Turks & Caicos Islands 0.0004 0% 186
Chad Chad 0.215 +1.99% 71
Togo Togo 0.0913 +3.28% 114
Thailand Thailand 0.824 +1.29% 30
Tajikistan Tajikistan 0.14 +3.87% 96
Turkmenistan Turkmenistan 0.0943 +1.4% 110
Timor-Leste Timor-Leste 0.0127 +0.794% 154
Tonga Tonga 0.0014 0% 178
Trinidad & Tobago Trinidad & Tobago 0.0202 +0.498% 146
Tunisia Tunisia 0.21 +1.35% 73
Turkey Turkey 1.63 +1.52% 18
Tuvalu Tuvalu 0.0001 0% 189
Tanzania Tanzania 0.675 +2.58% 36
Uganda Uganda 0.393 +2.1% 47
Ukraine Ukraine 0.618 -0.755% 38
Uruguay Uruguay 0.0545 +1.68% 128
United States United States 9.54 +1.49% 3
Uzbekistan Uzbekistan 0.6 +1.95% 39
St. Vincent & Grenadines St. Vincent & Grenadines 0.0017 0% 175
Venezuela Venezuela 0.317 +0.285% 55
British Virgin Islands British Virgin Islands 0.0003 0% 187
U.S. Virgin Islands U.S. Virgin Islands 0.0008 0% 183
Vietnam Vietnam 1.53 +2.1% 19
Vanuatu Vanuatu 0.0035 0% 170
Samoa Samoa 0.0034 +3.03% 171
Yemen Yemen 0.302 +3.32% 57
South Africa South Africa 0.771 +0.351% 32
Zambia Zambia 0.18 +1.29% 83
Zimbabwe Zimbabwe 0.171 +1.19% 88

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.WA.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.WA.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))