Nitrous oxide (N2O) emissions from Transport (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0018 +5.88% 168
Afghanistan Afghanistan 0.0274 +3.79% 114
Angola Angola 0.0984 +4.57% 73
Albania Albania 0.0105 +0.962% 143
United Arab Emirates United Arab Emirates 0.352 +3.04% 36
Argentina Argentina 0.651 -4.23% 23
Armenia Armenia 0.0469 +5.87% 100
Antigua & Barbuda Antigua & Barbuda 0.0011 +10% 172
Australia Australia 1.62 +6.41% 11
Austria Austria 0.209 0% 45
Azerbaijan Azerbaijan 0.0896 +3.23% 78
Burundi Burundi 0.0061 0% 154
Belgium Belgium 0.212 -5.15% 44
Benin Benin 0.0437 -3.1% 102
Burkina Faso Burkina Faso 0.041 -3.07% 104
Bangladesh Bangladesh 0.627 -7.89% 24
Bulgaria Bulgaria 0.0814 -0.732% 82
Bahrain Bahrain 0.0267 +0.376% 116
Bahamas Bahamas 0.0057 +5.56% 156
Bosnia & Herzegovina Bosnia & Herzegovina 0.0297 +1.37% 111
Belarus Belarus 0.154 +1.12% 53
Belize Belize 0.0009 0% 174
Bermuda Bermuda 0.0012 +9.09% 171
Bolivia Bolivia 0.164 +3.47% 50
Brazil Brazil 3.52 +3.33% 5
Barbados Barbados 0.0024 +4.35% 166
Brunei Brunei 0.0098 +3.16% 145
Bhutan Bhutan 0.0049 +2.08% 159
Botswana Botswana 0.0281 +2.93% 113
Central African Republic Central African Republic 0.0031 +3.33% 161
Canada Canada 2.1 +1.74% 7
Switzerland Switzerland 0.138 +1.48% 60
Chile Chile 0.464 +1.87% 31
China China 26 +10.1% 1
Côte d’Ivoire Côte d’Ivoire 0.0616 -2.99% 90
Cameroon Cameroon 0.0486 +4.52% 98
Congo - Kinshasa Congo - Kinshasa 0.029 +3.2% 112
Congo - Brazzaville Congo - Brazzaville 0.0215 +4.37% 127
Colombia Colombia 0.481 +3.09% 30
Comoros Comoros 0.0027 0% 164
Cape Verde Cape Verde 0.0086 -3.37% 147
Costa Rica Costa Rica 0.0738 +6.19% 85
Cuba Cuba 0.0143 +5.15% 135
Cayman Islands Cayman Islands 0.0012 +9.09% 171
Cyprus Cyprus 0.017 0% 130
Czechia Czechia 0.185 +1.15% 47
Germany Germany 1.35 -5.52% 13
Djibouti Djibouti 0.0052 0% 158
Dominica Dominica 0.0003 0% 179
Denmark Denmark 0.118 +0.598% 68
Dominican Republic Dominican Republic 0.101 +5.13% 72
Algeria Algeria 0.552 +5.01% 29
Ecuador Ecuador 0.264 +7.02% 39
Egypt Egypt 0.773 -1.64% 21
Eritrea Eritrea 0.0027 0% 164
Spain Spain 0.862 -0.84% 20
Estonia Estonia 0.0261 -4.04% 119
Ethiopia Ethiopia 0.081 0% 84
Finland Finland 0.0881 -8.52% 79
Fiji Fiji 0.0128 +3.23% 137
France France 1.18 -1.26% 15
Gabon Gabon 0.0021 +5% 167
United Kingdom United Kingdom 1.14 +1.47% 16
Georgia Georgia 0.0491 +1.87% 97
Ghana Ghana 0.121 -3.05% 66
Gibraltar Gibraltar 0.0054 +1.89% 157
Guinea Guinea 0.0264 -2.94% 118
Gambia Gambia 0.0052 -1.89% 158
Guinea-Bissau Guinea-Bissau 0.0029 -3.33% 162
Equatorial Guinea Equatorial Guinea 0.0059 +5.36% 155
Greece Greece 0.133 +0.837% 63
Grenada Grenada 0.0005 0% 177
Greenland Greenland 0.0008 +14.3% 175
Guatemala Guatemala 0.134 +6.36% 61
Guyana Guyana 0.0112 +0.901% 141
Hong Kong SAR China Hong Kong SAR China 0.0947 +24.1% 74
Honduras Honduras 0.0592 +6.47% 91
Croatia Croatia 0.0709 +2.46% 87
Haiti Haiti 0.0184 +5.14% 128
Hungary Hungary 0.13 -2.11% 64
Indonesia Indonesia 1.69 +4.39% 10
India India 7.27 +5.51% 3
Ireland Ireland 0.117 -0.929% 69
Iran Iran 4.41 +1.25% 4
Iraq Iraq 0.376 +6.12% 32
Iceland Iceland 0.0086 -5.49% 147
Israel Israel 0.224 -1.41% 43
Italy Italy 0.924 -1.07% 19
Jamaica Jamaica 0.0268 +5.1% 115
Jordan Jordan 0.0842 0% 81
Japan Japan 1.86 -3.77% 8
Kazakhstan Kazakhstan 0.318 +5.92% 38
Kenya Kenya 0.127 +0.158% 65
Kyrgyzstan Kyrgyzstan 0.0218 +0.461% 126
Cambodia Cambodia 0.152 +2.7% 55
Kiribati Kiribati 0.0006 0% 176
St. Kitts & Nevis St. Kitts & Nevis 0.0004 0% 178
South Korea South Korea 1.57 -0.789% 12
Kuwait Kuwait 0.141 -1.05% 57
Laos Laos 0.035 +2.64% 107
Lebanon Lebanon 0.0455 0% 101
Liberia Liberia 0.0122 -3.17% 139
Libya Libya 0.171 -0.582% 49
St. Lucia St. Lucia 0.001 +11.1% 173
Sri Lanka Sri Lanka 0.139 +9.83% 59
Lesotho Lesotho 0.0075 +2.74% 149
Lithuania Lithuania 0.0684 +3.32% 88
Luxembourg Luxembourg 0.0406 -3.1% 105
Latvia Latvia 0.0337 +0.597% 109
Macao SAR China Macao SAR China 0.0148 +4.23% 133
Morocco Morocco 0.226 -0.789% 41
Moldova Moldova 0.0339 +0.893% 108
Madagascar Madagascar 0.0159 -0.625% 132
Maldives Maldives 0.017 +3.66% 130
Mexico Mexico 1.31 +1.69% 14
North Macedonia North Macedonia 0.0257 +0.784% 120
Mali Mali 0.05 -2.91% 94
Malta Malta 0.0062 -1.59% 153
Myanmar (Burma) Myanmar (Burma) 0.139 +2.74% 58
Mongolia Mongolia 0.0872 +2.71% 80
Mozambique Mozambique 0.0479 +0.209% 99
Mauritania Mauritania 0.0366 -2.92% 106
Mauritius Mauritius 0.0126 0% 138
Malawi Malawi 0.0115 0% 140
Malaysia Malaysia 0.619 +12.1% 25
Namibia Namibia 0.0236 +3.06% 123
New Caledonia New Caledonia 0.0215 +3.86% 127
Niger Niger 0.0136 -2.86% 136
Nigeria Nigeria 0.587 -3.07% 26
Nicaragua Nicaragua 0.033 +6.45% 110
Netherlands Netherlands 0.226 +2.08% 42
Norway Norway 0.118 -1.25% 67
Nepal Nepal 0.0722 +3% 86
New Zealand New Zealand 0.164 +7.42% 51
Oman Oman 0.0944 +2.61% 75
Pakistan Pakistan 1.09 -12.6% 18
Panama Panama 0.0648 +6.75% 89
Peru Peru 0.355 +2.75% 35
Philippines Philippines 0.374 +4.85% 33
Palau Palau 0.0099 +3.13% 144
Papua New Guinea Papua New Guinea 0.0233 +3.56% 124
Poland Poland 0.576 +1.59% 27
Puerto Rico Puerto Rico 0.0222 +6.22% 125
North Korea North Korea 0.0253 +5.86% 121
Portugal Portugal 0.143 -3.57% 56
Paraguay Paraguay 0.107 +1.23% 70
French Polynesia French Polynesia 0.0074 +2.78% 150
Qatar Qatar 0.185 +5% 48
Romania Romania 0.202 +1.15% 46
Russia Russia 3.15 +1.28% 6
Rwanda Rwanda 0.0067 0% 152
Saudi Arabia Saudi Arabia 1.69 +4.56% 9
Sudan Sudan 0.152 +0.132% 54
Senegal Senegal 0.0411 -3.07% 103
Singapore Singapore 0.0709 +11.5% 87
Solomon Islands Solomon Islands 0.0025 +4.17% 165
Sierra Leone Sierra Leone 0.0079 -3.66% 148
El Salvador El Salvador 0.0491 +6.28% 97
Somalia Somalia 0.0072 0% 151
São Tomé & Príncipe São Tomé & Príncipe 0.0018 0% 168
Suriname Suriname 0.004 0% 160
Slovakia Slovakia 0.0811 +1.63% 83
Slovenia Slovenia 0.0495 -11.1% 95
Sweden Sweden 0.133 -2.63% 62
Eswatini Eswatini 0.0092 +3.37% 146
Seychelles Seychelles 0.0106 +2.91% 142
Syria Syria 0.0574 +0.35% 92
Turks & Caicos Islands Turks & Caicos Islands 0.0004 +33.3% 178
Chad Chad 0.0162 +4.52% 131
Togo Togo 0.0144 -2.04% 134
Thailand Thailand 1.1 +1.64% 17
Tajikistan Tajikistan 0.0243 +0.83% 122
Turkmenistan Turkmenistan 0.0906 0% 76
Timor-Leste Timor-Leste 0.0031 +6.9% 161
Tonga Tonga 0.0013 0% 170
Trinidad & Tobago Trinidad & Tobago 0.0281 +3.31% 113
Tunisia Tunisia 0.0898 -0.554% 77
Turkey Turkey 0.572 +5.83% 28
Tanzania Tanzania 0.104 +0.193% 71
Uganda Uganda 0.0492 -0.203% 96
Ukraine Ukraine 0.25 +1.71% 40
Uruguay Uruguay 0.0531 +0.951% 93
United States United States 21.6 +1.29% 2
Uzbekistan Uzbekistan 0.334 -2.42% 37
St. Vincent & Grenadines St. Vincent & Grenadines 0.0003 0% 179
Venezuela Venezuela 0.162 +30.5% 52
British Virgin Islands British Virgin Islands 0.0003 +50% 179
Vietnam Vietnam 0.356 +12.2% 34
Vanuatu Vanuatu 0.0017 +6.25% 169
Samoa Samoa 0.0028 +3.7% 163
Yemen Yemen 0.0183 0% 129
South Africa South Africa 0.729 +2.42% 22
Zambia Zambia 0.0265 0% 117
Zimbabwe Zimbabwe 0.0297 0% 111

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.TR.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.TR.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))