Nitrous oxide (N2O) emissions from Power Industry (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0006 +20% 135
Afghanistan Afghanistan 0.0061 +7.02% 108
Angola Angola 0.0084 +3.7% 103
Albania Albania 0 141
United Arab Emirates United Arab Emirates 0.0401 -3.84% 71
Argentina Argentina 0.085 -10.1% 48
Armenia Armenia 0.0008 +14.3% 133
Antigua & Barbuda Antigua & Barbuda 0.0003 0% 138
Australia Australia 0.699 -2.72% 17
Austria Austria 0.102 -0.292% 46
Azerbaijan Azerbaijan 0.0108 +6.93% 99
Burundi Burundi 0.0005 0% 136
Belgium Belgium 0.0642 -2.43% 58
Benin Benin 0.0005 0% 136
Burkina Faso Burkina Faso 0.0024 0% 121
Bangladesh Bangladesh 0.0843 +3.95% 50
Bulgaria Bulgaria 0.087 -29.8% 47
Bahrain Bahrain 0.0112 +3.7% 97
Bahamas Bahamas 0.0022 0% 123
Bosnia & Herzegovina Bosnia & Herzegovina 0.358 -5.59% 27
Belarus Belarus 0.068 -1.45% 55
Belize Belize 0.002 0% 125
Bermuda Bermuda 0.0004 0% 137
Bolivia Bolivia 0.0194 +0.518% 83
Brazil Brazil 0.763 -0.365% 16
Barbados Barbados 0.0008 +14.3% 133
Brunei Brunei 0.348 +8.79% 28
Bhutan Bhutan 0.0019 +5.56% 126
Botswana Botswana 0.513 +1.2% 20
Central African Republic Central African Republic 0.0002 0% 139
Canada Canada 0.209 -4.18% 36
Switzerland Switzerland 0.0589 -0.675% 61
Chile Chile 0.492 -12.8% 21
China China 63.5 +5.93% 1
Côte d’Ivoire Côte d’Ivoire 0.0064 -1.54% 107
Cameroon Cameroon 0.0025 0% 120
Congo - Kinshasa Congo - Kinshasa 0.0044 0% 114
Congo - Brazzaville Congo - Brazzaville 0.0013 -7.14% 130
Colombia Colombia 0.069 +22.3% 54
Comoros Comoros 0.0001 0% 140
Cape Verde Cape Verde 0.0004 0% 137
Costa Rica Costa Rica 0.0024 0% 121
Cuba Cuba 0.0289 +3.21% 73
Cayman Islands Cayman Islands 0.0004 0% 137
Cyprus Cyprus 0.005 0% 111
Czechia Czechia 1.4 -14.9% 13
Germany Germany 1.43 -23.2% 12
Djibouti Djibouti 0.0003 0% 138
Dominica Dominica 0.0002 0% 139
Denmark Denmark 0.15 -3.11% 40
Dominican Republic Dominican Republic 0.0359 +2.87% 72
Algeria Algeria 0.0214 -6.96% 80
Ecuador Ecuador 0.0111 +3.74% 98
Egypt Egypt 0.0655 +1.87% 56
Eritrea Eritrea 0.0006 0% 135
Spain Spain 0.132 -15.3% 41
Estonia Estonia 0.0418 -3.02% 70
Ethiopia Ethiopia 0 141
Finland Finland 0.557 -18.5% 19
Fiji Fiji 0.001 0% 131
France France 0.241 -9.62% 35
Gabon Gabon 0.002 0% 125
United Kingdom United Kingdom 0.365 -3.08% 26
Georgia Georgia 0.0005 0% 136
Ghana Ghana 0.0045 -2.17% 113
Gibraltar Gibraltar 0.0001 0% 140
Guinea Guinea 0.0016 0% 128
Gambia Gambia 0.0003 0% 138
Guinea-Bissau Guinea-Bissau 0.0002 0% 139
Equatorial Guinea Equatorial Guinea 0.0002 -33.3% 139
Greece Greece 0.028 -20.2% 74
Grenada Grenada 0.0001 0% 140
Greenland Greenland 0.0004 0% 137
Guatemala Guatemala 0.335 +10.4% 30
Guyana Guyana 0.002 +11.1% 125
Hong Kong SAR China Hong Kong SAR China 0.0611 -1.45% 59
Honduras Honduras 0.0236 +1.72% 79
Croatia Croatia 0.0166 -4.6% 90
Haiti Haiti 0.0018 +5.88% 127
Hungary Hungary 0.0422 -8.06% 69
Indonesia Indonesia 1.96 +4.54% 11
India India 23 +8.31% 2
Ireland Ireland 0.0524 -22.9% 63
Iran Iran 0.105 -1.87% 45
Iraq Iraq 0.0827 +5.35% 51
Iceland Iceland 0 141
Israel Israel 0.06 -11.4% 60
Italy Italy 0.379 -10.5% 24
Jamaica Jamaica 0.0032 +3.23% 116
Jordan Jordan 0.005 +2.04% 111
Japan Japan 2.31 -5.65% 8
Kazakhstan Kazakhstan 0.343 -1.69% 29
Kenya Kenya 0.0057 0% 110
Kyrgyzstan Kyrgyzstan 0.009 +2.27% 101
Cambodia Cambodia 0.0759 +8.58% 52
Kiribati Kiribati 0 141
St. Kitts & Nevis St. Kitts & Nevis 0.0001 0% 140
South Korea South Korea 2.83 -1.6% 6
Kuwait Kuwait 0.0644 -0.155% 57
Laos Laos 0.0611 +8.72% 59
Lebanon Lebanon 0.0146 0% 91
Liberia Liberia 0.0009 0% 132
Libya Libya 0.0193 +2.66% 84
St. Lucia St. Lucia 0.0004 0% 137
Sri Lanka Sri Lanka 0.0272 -7.17% 77
Lesotho Lesotho 0.0004 0% 137
Lithuania Lithuania 0.0427 +1.43% 67
Luxembourg Luxembourg 0.0079 0% 104
Latvia Latvia 0.024 0% 78
Macao SAR China Macao SAR China 0.0013 0% 130
Morocco Morocco 0.105 -5.57% 44
Moldova Moldova 0.0026 +8.33% 119
Madagascar Madagascar 0.114 +11.4% 43
Maldives Maldives 0.0014 +7.69% 129
Mexico Mexico 0.281 +14.3% 34
North Macedonia North Macedonia 0.0123 +6.03% 94
Mali Mali 0.0026 -3.7% 119
Malta Malta 0.0004 0% 137
Myanmar (Burma) Myanmar (Burma) 0.0424 +8.16% 68
Mongolia Mongolia 0.68 +8.83% 18
Mozambique Mozambique 0.0037 0% 115
Mauritania Mauritania 0.0018 -5.26% 127
Mauritius Mauritius 0.0114 +4.59% 96
Malawi Malawi 0.0065 +10.2% 106
Malaysia Malaysia 0.368 +4.19% 25
Namibia Namibia 0.0002 0% 139
New Caledonia New Caledonia 0.0849 +8.71% 49
Niger Niger 0.0016 0% 128
Nigeria Nigeria 0.0064 -3.03% 107
Nicaragua Nicaragua 0.0183 +0.549% 86
Netherlands Netherlands 0.188 -9.49% 37
Norway Norway 0.0275 +0.365% 76
Nepal Nepal 0 141
New Zealand New Zealand 0.0279 -3.12% 75
Oman Oman 0.0103 +3% 100
Pakistan Pakistan 0.418 -4.65% 23
Panama Panama 0.0123 +18.3% 94
Peru Peru 0.0207 +0.485% 81
Philippines Philippines 4.23 +10.3% 4
Palau Palau 0.001 0% 131
Papua New Guinea Papua New Guinea 0.0026 +4% 119
Poland Poland 2.04 -20% 9
Puerto Rico Puerto Rico 0.434 +1.81% 22
North Korea North Korea 0.0493 +8.59% 65
Portugal Portugal 0.0561 -1.41% 62
Paraguay Paraguay 0 141
French Polynesia French Polynesia 0.0006 0% 135
Qatar Qatar 0.0128 +9.4% 93
Romania Romania 0.046 -19.3% 66
Russia Russia 2.02 +4.98% 10
Rwanda Rwanda 0.0181 +11% 87
Saudi Arabia Saudi Arabia 0.283 +1.25% 33
Sudan Sudan 0.0088 0% 102
Senegal Senegal 0.0495 -4.99% 64
Singapore Singapore 0.179 -15.7% 38
Solomon Islands Solomon Islands 0.0002 0% 139
Sierra Leone Sierra Leone 0.0005 -16.7% 136
El Salvador El Salvador 0.017 +0.592% 89
Somalia Somalia 0.0007 0% 134
São Tomé & Príncipe São Tomé & Príncipe 0.0001 0% 140
Suriname Suriname 0.0021 +5% 124
Slovakia Slovakia 0.0729 -2.93% 53
Slovenia Slovenia 0.0144 -6.49% 92
Sweden Sweden 0.298 +0.168% 31
Eswatini Eswatini 0.0032 0% 116
Seychelles Seychelles 0.0005 0% 136
Syria Syria 0.012 +0.84% 95
Turks & Caicos Islands Turks & Caicos Islands 0.0001 0% 140
Chad Chad 0.0009 +12.5% 132
Togo Togo 0.0003 0% 138
Thailand Thailand 1.22 -9.46% 14
Tajikistan Tajikistan 0.0059 +1.72% 109
Turkmenistan Turkmenistan 0.0075 -2.6% 105
Timor-Leste Timor-Leste 0.0003 0% 138
Tonga Tonga 0.0001 0% 140
Trinidad & Tobago Trinidad & Tobago 0.0023 -4.17% 122
Tunisia Tunisia 0.0045 +9.76% 113
Turkey Turkey 2.63 +3.91% 7
Tanzania Tanzania 0.003 +3.45% 117
Uganda Uganda 0.0048 0% 112
Ukraine Ukraine 0.178 -5.58% 39
Uruguay Uruguay 0.0185 0% 85
United States United States 5.84 -16.5% 3
Uzbekistan Uzbekistan 0.117 +21.2% 42
St. Vincent & Grenadines St. Vincent & Grenadines 0.0002 0% 139
Venezuela Venezuela 0.0205 +25% 82
British Virgin Islands British Virgin Islands 0.0001 0% 140
Vietnam Vietnam 4.15 +24.1% 5
Vanuatu Vanuatu 0.0001 0% 140
Samoa Samoa 0.0002 0% 139
Yemen Yemen 0.0027 0% 118
South Africa South Africa 0.778 -5.61% 15
Zambia Zambia 0.287 +11.6% 32
Zimbabwe Zimbabwe 0.0174 +11.5% 88

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.PI.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.PI.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))