Nitrous oxide (N2O) emissions from Industrial Processes (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0045 +4.65% 175
Afghanistan Afghanistan 0.076 +3.12% 135
Angola Angola 0.975 -4.48% 50
Albania Albania 0.0394 -1.75% 146
United Arab Emirates United Arab Emirates 1.1 +1.12% 47
Argentina Argentina 1.04 -21.8% 49
Armenia Armenia 0.0388 +1.57% 147
American Samoa American Samoa 0.0003 0% 190
Antigua & Barbuda Antigua & Barbuda 0.0038 +5.56% 177
Australia Australia 5.99 +3.13% 9
Austria Austria 0.462 -6.5% 74
Azerbaijan Azerbaijan 0.156 +3.37% 111
Burundi Burundi 0.0798 0% 134
Belgium Belgium 4.47 -5.36% 13
Benin Benin 0.179 -0.609% 109
Burkina Faso Burkina Faso 0.27 +15.8% 98
Bangladesh Bangladesh 0.95 -1.48% 52
Bulgaria Bulgaria 0.224 -13% 103
Bahrain Bahrain 0.137 +2.01% 114
Bahamas Bahamas 0.0208 +10.1% 160
Bosnia & Herzegovina Bosnia & Herzegovina 0.0973 -2.01% 124
Belarus Belarus 0.797 -6.41% 60
Belize Belize 0.014 +91.8% 165
Bermuda Bermuda 0.0043 +4.88% 176
Bolivia Bolivia 0.869 +22.6% 56
Brazil Brazil 6.61 -4.31% 5
Barbados Barbados 0.0072 +4.35% 171
Brunei Brunei 0.0186 +2.76% 161
Bhutan Bhutan 0.0423 +1.68% 144
Botswana Botswana 0.388 +56.4% 81
Central African Republic Central African Republic 1.31 -35.2% 40
Canada Canada 4.64 +53.8% 12
Switzerland Switzerland 0.176 -2.6% 110
Chile Chile 1.07 +4.65% 48
China China 40.6 +9.06% 1
Côte d’Ivoire Côte d’Ivoire 0.338 -3.09% 90
Cameroon Cameroon 0.307 -15.2% 95
Congo - Kinshasa Congo - Kinshasa 2.38 -10.6% 24
Congo - Brazzaville Congo - Brazzaville 0.206 -20.8% 106
Colombia Colombia 0.939 -0.0852% 54
Comoros Comoros 0.0089 -1.11% 169
Cape Verde Cape Verde 0.0127 -2.31% 167
Costa Rica Costa Rica 0.0955 -1.85% 126
Cuba Cuba 0.564 +2.47% 66
Cayman Islands Cayman Islands 0.0043 +4.88% 176
Cyprus Cyprus 0.0835 0% 132
Czechia Czechia 1.11 -7.96% 46
Germany Germany 4.2 -5.09% 14
Djibouti Djibouti 0.0128 0% 166
Dominica Dominica 0.0011 +10% 186
Denmark Denmark 0.149 -3.37% 113
Dominican Republic Dominican Republic 0.24 +5.18% 102
Algeria Algeria 1.54 -3.09% 35
Ecuador Ecuador 0.388 +5.9% 82
Egypt Egypt 6.15 +0.0911% 7
Eritrea Eritrea 0.0329 +2.49% 152
Spain Spain 2.08 -8.1% 28
Estonia Estonia 0.047 -10.1% 142
Ethiopia Ethiopia 1.3 +0.123% 41
Finland Finland 1.25 -5.09% 43
Fiji Fiji 0.0255 +2% 156
France France 2.39 -10.6% 23
Faroe Islands Faroe Islands 0.0006 0% 189
Micronesia (Federated States of) Micronesia (Federated States of) 0 192
Gabon Gabon 0.125 -4.78% 118
United Kingdom United Kingdom 2.5 -5.91% 20
Georgia Georgia 0.846 +3.99% 58
Ghana Ghana 0.488 -17.8% 72
Gibraltar Gibraltar 0.0028 0% 180
Guinea Guinea 0.26 -14.8% 100
Gambia Gambia 0.0209 +0.481% 159
Guinea-Bissau Guinea-Bissau 0.0369 -23.8% 149
Equatorial Guinea Equatorial Guinea 0.015 -1.96% 163
Greece Greece 0.701 -4.07% 63
Grenada Grenada 0.0018 +5.88% 182
Greenland Greenland 0.0031 0% 179
Guatemala Guatemala 0.343 +3.88% 87
Guam Guam 0.0009 0% 188
Guyana Guyana 0.0805 +149% 133
Hong Kong SAR China Hong Kong SAR China 0.121 +12% 120
Honduras Honduras 0.21 +31.6% 105
Croatia Croatia 0.784 +0.358% 61
Haiti Haiti 0.176 +0.918% 110
Hungary Hungary 0.349 -3.35% 86
Indonesia Indonesia 4.94 +19.3% 10
India India 16.7 +4.49% 4
Ireland Ireland 0.128 -3.76% 117
Iran Iran 6.22 +0.767% 6
Iraq Iraq 2.41 +2.25% 22
Iceland Iceland 0.0208 -5.45% 160
Israel Israel 0.549 +0.201% 67
Italy Italy 1.41 -5.13% 38
Jamaica Jamaica 0.0483 +5.23% 141
Jordan Jordan 0.517 +2.29% 69
Japan Japan 2.97 -5.95% 17
Kazakhstan Kazakhstan 0.816 -1.85% 59
Kenya Kenya 0.627 +0.208% 64
Kyrgyzstan Kyrgyzstan 0.0342 +0.885% 151
Cambodia Cambodia 0.375 -11.5% 83
Kiribati Kiribati 0.0015 0% 183
St. Kitts & Nevis St. Kitts & Nevis 0.0014 0% 184
South Korea South Korea 2.85 -2.54% 18
Kuwait Kuwait 0.511 +0.57% 70
Laos Laos 0.484 +107% 73
Lebanon Lebanon 0.343 +0.205% 89
Liberia Liberia 0.097 +2.43% 125
Libya Libya 0.313 +1.26% 94
St. Lucia St. Lucia 0.0038 +5.56% 177
Sri Lanka Sri Lanka 0.213 +2.45% 104
Lesotho Lesotho 0.0456 +1.11% 143
Lithuania Lithuania 1.52 -2.26% 36
Luxembourg Luxembourg 0.0174 -9.38% 162
Latvia Latvia 0.0361 -2.96% 150
Macao SAR China Macao SAR China 0.022 +2.33% 158
Morocco Morocco 0.438 -1.95% 77
Moldova Moldova 0.0506 +0.596% 138
Madagascar Madagascar 0.343 -5.33% 88
Maldives Maldives 0.0242 +2.54% 157
Mexico Mexico 2.47 +4.61% 21
North Macedonia North Macedonia 0.0326 +0.929% 153
Mali Mali 0.331 -0.779% 92
Malta Malta 0.0069 -4.17% 172
Myanmar (Burma) Myanmar (Burma) 0.862 +16.7% 57
Mongolia Mongolia 0.19 +36.9% 108
Mozambique Mozambique 1.96 -24% 31
Mauritania Mauritania 0.0861 +2.87% 129
Mauritius Mauritius 0.0402 +1.77% 145
Malawi Malawi 0.244 -3.82% 101
Malaysia Malaysia 1.62 +3.69% 33
Namibia Namibia 0.0847 +1.56% 131
New Caledonia New Caledonia 0.0313 +4.68% 154
Niger Niger 0.106 -2.31% 121
Nigeria Nigeria 3.77 -2.38% 16
Nicaragua Nicaragua 0.125 +54.9% 119
Netherlands Netherlands 1.52 -1.42% 37
Norway Norway 1.15 -0.649% 45
Nepal Nepal 0.41 +15.2% 78
Nauru Nauru 0.0001 0% 191
New Zealand New Zealand 0.266 +4.03% 99
Oman Oman 0.444 +2.07% 76
Pakistan Pakistan 1.76 -6.07% 32
Panama Panama 0.0872 +10.4% 128
Peru Peru 0.446 +0.0224% 75
Philippines Philippines 0.952 +4.51% 51
Palau Palau 0.0142 +2.16% 164
Papua New Guinea Papua New Guinea 0.0977 +20.8% 123
Poland Poland 4.94 -9.04% 11
Puerto Rico Puerto Rico 0.0637 +8.7% 137
North Korea North Korea 0.4 +7.89% 79
Portugal Portugal 0.39 -13.5% 80
Paraguay Paraguay 0.275 +1.85% 97
French Polynesia French Polynesia 0.0108 +1.89% 168
Qatar Qatar 0.35 +5.05% 85
Romania Romania 2.25 -4.36% 27
Russia Russia 22.2 +1.84% 3
Rwanda Rwanda 0.0987 +0.101% 122
Saudi Arabia Saudi Arabia 3.83 +3.02% 15
Sudan Sudan 2 +7.85% 29
Senegal Senegal 0.293 +2.02% 96
Singapore Singapore 0.15 +2.88% 112
Solomon Islands Solomon Islands 0.0078 +1.3% 170
Sierra Leone Sierra Leone 0.0939 -10.1% 127
El Salvador El Salvador 0.0723 +5.39% 136
Somalia Somalia 0.197 +0.0507% 107
São Tomé & Príncipe São Tomé & Príncipe 0.0037 +2.78% 178
Suriname Suriname 0.0276 +9.96% 155
Slovakia Slovakia 1.56 -0.727% 34
Slovenia Slovenia 0.0848 -5.36% 130
Sweden Sweden 0.752 -3.43% 62
Eswatini Eswatini 0.0489 +2.95% 139
Seychelles Seychelles 0.014 +2.19% 165
Syria Syria 1.16 +4.49% 44
Turks & Caicos Islands Turks & Caicos Islands 0.0013 +8.33% 185
Chad Chad 0.329 -1.29% 93
Togo Togo 0.134 -15.5% 115
Thailand Thailand 2.31 +7.59% 26
Tajikistan Tajikistan 0.0383 +1.32% 148
Turkmenistan Turkmenistan 0.904 -0.0774% 55
Timor-Leste Timor-Leste 0.0065 +10.2% 173
Tonga Tonga 0.0024 +4.35% 181
Trinidad & Tobago Trinidad & Tobago 0.0487 -0.409% 140
Tunisia Tunisia 0.498 +6.43% 71
Turkey Turkey 6.11 -1.59% 8
Tuvalu Tuvalu 0.0001 0% 191
Tanzania Tanzania 1.26 -5.13% 42
Uganda Uganda 0.624 +1.1% 65
Ukraine Ukraine 2.38 +1.2% 25
Uruguay Uruguay 0.13 -2.69% 116
United States United States 34.8 -0.274% 2
Uzbekistan Uzbekistan 0.333 -0.537% 91
St. Vincent & Grenadines St. Vincent & Grenadines 0.0013 0% 185
Venezuela Venezuela 0.543 +12.4% 68
British Virgin Islands British Virgin Islands 0.001 +11.1% 187
U.S. Virgin Islands U.S. Virgin Islands 0 192
Vietnam Vietnam 1.96 +16.5% 30
Vanuatu Vanuatu 0.0045 +2.27% 175
Samoa Samoa 0.0052 +1.96% 174
Yemen Yemen 1.34 +2.18% 39
South Africa South Africa 2.75 +0.171% 19
Zambia Zambia 0.94 -10% 53
Zimbabwe Zimbabwe 0.357 -1.38% 84

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.IP.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.IP.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))