Nitrous oxide (N2O) emissions from Industrial Combustion (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0001 0% 132
Afghanistan Afghanistan 0.0136 +7.09% 77
Angola Angola 0.0079 +1.28% 91
Albania Albania 0.0031 -3.13% 111
United Arab Emirates United Arab Emirates 0.0703 +1.59% 40
Argentina Argentina 0.0492 -5.02% 49
Armenia Armenia 0.0004 +33.3% 129
Antigua & Barbuda Antigua & Barbuda 0 133
Australia Australia 0.229 -0.78% 15
Austria Austria 0.0849 -0.352% 33
Azerbaijan Azerbaijan 0.0021 +5% 116
Burundi Burundi 0.0013 0% 122
Belgium Belgium 0.0538 -3.24% 47
Benin Benin 0.0021 -4.55% 116
Burkina Faso Burkina Faso 0.0036 -2.7% 108
Bangladesh Bangladesh 0.0754 +34.6% 38
Bulgaria Bulgaria 0.02 -4.76% 66
Bahrain Bahrain 0.0011 +10% 123
Bahamas Bahamas 0.0006 0% 127
Bosnia & Herzegovina Bosnia & Herzegovina 0.004 -2.44% 106
Belarus Belarus 0.0154 +1.99% 74
Belize Belize 0.002 -4.76% 117
Bermuda Bermuda 0 133
Bolivia Bolivia 0.0343 -2.28% 57
Brazil Brazil 2.14 -0.317% 3
Barbados Barbados 0.0003 0% 130
Brunei Brunei 0.0009 0% 125
Bhutan Bhutan 0.0042 +2.44% 105
Botswana Botswana 0.0018 0% 118
Central African Republic Central African Republic 0.0003 0% 130
Canada Canada 0.35 -0.256% 11
Switzerland Switzerland 0.0269 0% 61
Chile Chile 0.0952 -0.937% 30
China China 6.43 +5.06% 1
Côte d’Ivoire Côte d’Ivoire 0.0026 -3.7% 113
Cameroon Cameroon 0.0033 +3.12% 109
Congo - Kinshasa Congo - Kinshasa 0.0188 +1.08% 69
Congo - Brazzaville Congo - Brazzaville 0.0017 0% 119
Colombia Colombia 0.127 +19.2% 26
Comoros Comoros 0.0001 0% 132
Cape Verde Cape Verde 0.0003 0% 130
Costa Rica Costa Rica 0.0212 -0.469% 64
Cuba Cuba 0.0539 -1.28% 46
Cayman Islands Cayman Islands 0.0001 132
Cyprus Cyprus 0.0049 +6.52% 100
Czechia Czechia 0.0505 -2.88% 48
Germany Germany 0.282 -4.18% 12
Djibouti Djibouti 0.0002 0% 131
Dominica Dominica 0.0001 0% 132
Denmark Denmark 0.0131 -3.68% 78
Dominican Republic Dominican Republic 0.0244 +1.24% 62
Algeria Algeria 0.0106 -3.64% 86
Ecuador Ecuador 0.0193 +1.05% 68
Egypt Egypt 0.0735 +6.21% 39
Eritrea Eritrea 0 133
Spain Spain 0.13 -2.11% 24
Estonia Estonia 0.0011 -8.33% 123
Ethiopia Ethiopia 0.012 +4.35% 81
Finland Finland 0.195 -0.765% 17
Fiji Fiji 0.0026 -3.7% 113
France France 0.132 -7.41% 23
Gabon Gabon 0.123 +0.0816% 27
United Kingdom United Kingdom 0.0972 -3.67% 29
Georgia Georgia 0.0044 -4.35% 103
Ghana Ghana 0.0234 -0.426% 63
Guinea Guinea 0.0026 0% 113
Gambia Gambia 0.0003 0% 130
Guinea-Bissau Guinea-Bissau 0.0004 0% 129
Equatorial Guinea Equatorial Guinea 0.0007 0% 126
Greece Greece 0.0112 -7.44% 84
Grenada Grenada 0 133
Greenland Greenland 0.0001 0% 132
Guatemala Guatemala 0.0049 +4.26% 100
Guyana Guyana 0.0061 -3.17% 97
Hong Kong SAR China Hong Kong SAR China 0.0044 +22.2% 103
Honduras Honduras 0.0111 +0.909% 85
Croatia Croatia 0.0075 0% 92
Haiti Haiti 0.0056 +1.82% 99
Hungary Hungary 0.0234 -1.27% 63
Indonesia Indonesia 0.865 -0.506% 5
India India 5.37 +2.64% 2
Ireland Ireland 0.0154 -1.91% 74
Iran Iran 0.0847 +1.07% 34
Iraq Iraq 0.0212 +4.95% 64
Iceland Iceland 0.0001 0% 132
Israel Israel 0.0063 +1.61% 96
Italy Italy 0.0658 -7.32% 41
Jamaica Jamaica 0.0039 +2.63% 107
Jordan Jordan 0.0095 +61% 87
Japan Japan 0.423 -3.49% 9
Kazakhstan Kazakhstan 0.0844 -0.472% 35
Kenya Kenya 0.0326 +3.49% 58
Kyrgyzstan Kyrgyzstan 0.0015 +7.14% 120
Cambodia Cambodia 0.054 +0.372% 45
Kiribati Kiribati 0 133
St. Kitts & Nevis St. Kitts & Nevis 0 133
South Korea South Korea 0.194 -2.36% 18
Kuwait Kuwait 0.0113 +1.8% 83
Laos Laos 0.0082 +3.8% 90
Lebanon Lebanon 0.0049 +69% 100
Liberia Liberia 0.0015 0% 120
Libya Libya 0.0029 0% 112
St. Lucia St. Lucia 0.0001 0% 132
Sri Lanka Sri Lanka 0.0943 +0.106% 32
Lesotho Lesotho 0.0005 0% 128
Lithuania Lithuania 0.0073 -7.59% 94
Luxembourg Luxembourg 0.0024 -4% 114
Latvia Latvia 0.021 +0.478% 65
Macao SAR China Macao SAR China 0.0007 0% 126
Morocco Morocco 0.016 +0.629% 73
Moldova Moldova 0.001 0% 124
Madagascar Madagascar 0.0183 +1.1% 70
Maldives Maldives 0.0007 0% 126
Mexico Mexico 0.149 +1.64% 22
North Macedonia North Macedonia 0.0039 +2.63% 107
Mali Mali 0.0024 0% 114
Malta Malta 0.0001 0% 132
Myanmar (Burma) Myanmar (Burma) 0.0357 +1.13% 53
Mongolia Mongolia 0.0063 +5% 96
Mozambique Mozambique 0.0147 0% 75
Mauritania Mauritania 0.0015 -6.25% 120
Mauritius Mauritius 0.0015 0% 120
Malawi Malawi 0.0181 +8.38% 71
Malaysia Malaysia 0.0345 +4.23% 56
Namibia Namibia 0.0021 0% 116
New Caledonia New Caledonia 0.0088 +7.32% 88
Niger Niger 0.0006 0% 127
Nigeria Nigeria 0.216 -0.69% 16
Nicaragua Nicaragua 0.004 +2.56% 106
Netherlands Netherlands 0.0163 -4.68% 72
Norway Norway 0.035 +1.16% 54
Nepal Nepal 0.0655 +2.83% 42
New Zealand New Zealand 0.0306 -1.29% 60
Oman Oman 0.0084 +2.44% 89
Pakistan Pakistan 0.418 -1.55% 10
Panama Panama 0.0072 +1.41% 95
Peru Peru 0.0374 +1.36% 51
Philippines Philippines 0.0951 +3.71% 31
Palau Palau 0.0002 0% 131
Papua New Guinea Papua New Guinea 0.0046 0% 101
Poland Poland 0.15 -3.29% 21
Puerto Rico Puerto Rico 0.0002 0% 131
North Korea North Korea 0.129 +8.77% 25
Portugal Portugal 0.0588 -1.01% 44
Paraguay Paraguay 0.061 0% 43
French Polynesia French Polynesia 0.0003 0% 130
Qatar Qatar 0.0146 +7.35% 76
Romania Romania 0.0363 +2.25% 52
Russia Russia 0.725 +2.89% 6
Rwanda Rwanda 0.0056 +1.82% 99
Saudi Arabia Saudi Arabia 0.112 +3.04% 28
Sudan Sudan 0.0427 0% 50
Senegal Senegal 0.0074 -3.9% 93
Singapore Singapore 0.0124 +0.813% 79
Solomon Islands Solomon Islands 0.0002 0% 131
Sierra Leone Sierra Leone 0.001 0% 124
El Salvador El Salvador 0.0032 +6.67% 110
Somalia Somalia 0.0023 0% 115
São Tomé & Príncipe São Tomé & Príncipe 0.0001 0% 132
Suriname Suriname 0.0004 0% 129
Slovakia Slovakia 0.0308 -0.645% 59
Slovenia Slovenia 0.0072 0% 95
Sweden Sweden 0.248 +0.121% 13
Eswatini Eswatini 0.0181 0% 71
Seychelles Seychelles 0.0004 0% 129
Syria Syria 0.0044 0% 103
Turks & Caicos Islands Turks & Caicos Islands 0 133
Chad Chad 0.002 +5.26% 117
Togo Togo 0.0011 0% 123
Thailand Thailand 0.524 -3.76% 8
Tajikistan Tajikistan 0.0045 +2.27% 102
Turkmenistan Turkmenistan 0.0003 0% 130
Timor-Leste Timor-Leste 0.0002 0% 131
Tonga Tonga 0.0001 0% 132
Trinidad & Tobago Trinidad & Tobago 0.0014 -6.67% 121
Tunisia Tunisia 0.0059 +1.72% 98
Turkey Turkey 0.193 -3.25% 19
Tanzania Tanzania 0.0756 +1.61% 37
Uganda Uganda 0.156 -0.256% 20
Ukraine Ukraine 0.0348 -7.69% 55
Uruguay Uruguay 0.0765 0% 36
United States United States 1.93 -1.31% 4
Uzbekistan Uzbekistan 0.0117 +8.33% 82
St. Vincent & Grenadines St. Vincent & Grenadines 0.0001 0% 132
Venezuela Venezuela 0.0196 +5.95% 67
British Virgin Islands British Virgin Islands 0 133
Vietnam Vietnam 0.681 +12.4% 7
Vanuatu Vanuatu 0.0001 0% 132
Samoa Samoa 0.0002 0% 131
Yemen Yemen 0.0043 +34.4% 104
South Africa South Africa 0.235 -0.635% 14
Zambia Zambia 0.0539 +0.56% 46
Zimbabwe Zimbabwe 0.0122 +3.39% 80

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.IC.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.IC.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))