Nitrous oxide (N2O) emissions from Fugitive Emissions (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0 116
Afghanistan Afghanistan 0.0054 0% 81
Angola Angola 0.0569 +1.97% 26
Albania Albania 0.0002 0% 114
United Arab Emirates United Arab Emirates 0.0155 -1.9% 51
Argentina Argentina 0.0282 -0.353% 37
Armenia Armenia 0 116
Australia Australia 0.023 -4.96% 39
Austria Austria 0.0034 +6.25% 88
Azerbaijan Azerbaijan 0.0053 +26.2% 82
Burundi Burundi 0.011 0% 64
Belgium Belgium 0.0032 +6.67% 89
Benin Benin 0.0193 0% 46
Burkina Faso Burkina Faso 0.0231 0% 38
Bangladesh Bangladesh 0.0042 0% 85
Bulgaria Bulgaria 0.0009 -10% 108
Bahrain Bahrain 0.0028 0% 93
Bahamas Bahamas 0.0001 0% 115
Bosnia & Herzegovina Bosnia & Herzegovina 0.001 0% 107
Belarus Belarus 0.0028 0% 93
Belize Belize 0.0001 0% 115
Bermuda Bermuda 0 116
Bolivia Bolivia 0.0042 0% 85
Brazil Brazil 0.725 +0.387% 2
Barbados Barbados 0 116
Brunei Brunei 0.0058 +3.57% 80
Bhutan Bhutan 0.0003 0% 113
Botswana Botswana 0.0017 0% 102
Central African Republic Central African Republic 0.0068 0% 77
Canada Canada 0.102 +0.888% 12
Switzerland Switzerland 0.0002 0% 114
Chile Chile 0.0008 0% 109
China China 0.796 +4.69% 1
Côte d’Ivoire Côte d’Ivoire 0.0513 0% 28
Cameroon Cameroon 0.0101 -4.72% 67
Congo - Kinshasa Congo - Kinshasa 0.161 -0.372% 10
Congo - Brazzaville Congo - Brazzaville 0.0211 -4.52% 44
Colombia Colombia 0.0074 +8.82% 74
Comoros Comoros 0.0015 0% 104
Cape Verde Cape Verde 0 116
Costa Rica Costa Rica 0 116
Cuba Cuba 0.003 +3.45% 91
Cayman Islands Cayman Islands 0 116
Cyprus Cyprus 0.0001 0% 115
Czechia Czechia 0.0029 -12.1% 92
Germany Germany 0.0169 -10.6% 50
Djibouti Djibouti 0.0016 0% 103
Dominica Dominica 0 116
Denmark Denmark 0.0012 0% 106
Dominican Republic Dominican Republic 0.0035 0% 87
Algeria Algeria 0.0713 -4.55% 18
Ecuador Ecuador 0.0186 +17% 48
Egypt Egypt 0.078 -2.13% 15
Eritrea Eritrea 0.0058 0% 80
Spain Spain 0.0092 -7.07% 69
Estonia Estonia 0 116
Ethiopia Ethiopia 0.0605 0% 22
Finland Finland 0.0015 -6.25% 104
Fiji Fiji 0.0001 0% 115
France France 0.0041 -2.38% 86
Gabon Gabon 0.0091 -14.2% 70
United Kingdom United Kingdom 0.0207 -4.17% 45
Georgia Georgia 0 116
Ghana Ghana 0.0653 +0.153% 20
Guinea Guinea 0.0128 0% 59
Gambia Gambia 0.0022 0% 98
Guinea-Bissau Guinea-Bissau 0.0024 0% 96
Equatorial Guinea Equatorial Guinea 0.0023 -8% 97
Greece Greece 0.0048 +6.67% 83
Guatemala Guatemala 0.0031 0% 90
Guyana Guyana 0.0015 -25% 104
Hong Kong SAR China Hong Kong SAR China 0 116
Honduras Honduras 0 116
Croatia Croatia 0.001 0% 107
Haiti Haiti 0.0441 0% 30
Hungary Hungary 0.0018 -5.26% 101
Indonesia Indonesia 0.0586 +4.27% 23
India India 0.188 +0.644% 7
Ireland Ireland 0.0003 -25% 113
Iran Iran 0.186 +15.9% 8
Iraq Iraq 0.162 -4.78% 9
Israel Israel 0.0015 +7.14% 104
Italy Italy 0.0093 -5.1% 68
Jamaica Jamaica 0.0009 0% 108
Jordan Jordan 0.002 +11.1% 99
Japan Japan 0.0225 -5.86% 41
Kazakhstan Kazakhstan 0.0332 -0.599% 34
Kenya Kenya 0.0938 0% 13
Kyrgyzstan Kyrgyzstan 0 116
Cambodia Cambodia 0.0135 0% 58
Kiribati Kiribati 0 116
South Korea South Korea 0.0118 -3.28% 61
Kuwait Kuwait 0.0213 +3.4% 43
Laos Laos 0.0137 0% 57
Lebanon Lebanon 0.0001 0% 115
Liberia Liberia 0.0103 0% 66
Libya Libya 0.0573 +22.2% 25
St. Lucia St. Lucia 0 116
Sri Lanka Sri Lanka 0 116
Lesotho Lesotho 0.0034 0% 88
Lithuania Lithuania 0.0013 +8.33% 105
Luxembourg Luxembourg 0 116
Latvia Latvia 0.0003 0% 113
Macao SAR China Macao SAR China 0.0001 0% 115
Morocco Morocco 0.0007 0% 110
Moldova Moldova 0 116
Madagascar Madagascar 0.0358 0% 33
Maldives Maldives 0 116
Mexico Mexico 0.0696 -0.429% 19
North Macedonia North Macedonia 0 116
Mali Mali 0.0138 0% 56
Myanmar (Burma) Myanmar (Burma) 0.0025 0% 95
Mongolia Mongolia 0.0006 0% 111
Mozambique Mozambique 0.0583 -2.35% 24
Mauritania Mauritania 0.0072 0% 75
Mauritius Mauritius 0 116
Malawi Malawi 0.0187 0% 47
Malaysia Malaysia 0.0226 -8.5% 40
Namibia Namibia 0.0112 0% 63
New Caledonia New Caledonia 0 116
Niger Niger 0.0027 0% 94
Nigeria Nigeria 0.199 +1.69% 6
Nicaragua Nicaragua 0.0004 0% 112
Netherlands Netherlands 0.0058 0% 80
Norway Norway 0.0122 0% 60
Nepal Nepal 0.0004 0% 112
New Zealand New Zealand 0.0004 0% 112
Oman Oman 0.0219 -5.19% 42
Pakistan Pakistan 0.0153 -1.29% 53
Panama Panama 0 116
Peru Peru 0.008 -1.23% 72
Philippines Philippines 0.0512 0% 29
Palau Palau 0 116
Papua New Guinea Papua New Guinea 0.001 -16.7% 107
Poland Poland 0.0072 -7.69% 75
Puerto Rico Puerto Rico 0 116
North Korea North Korea 0.006 0% 78
Portugal Portugal 0.0034 -8.11% 88
Paraguay Paraguay 0.0148 0% 54
French Polynesia French Polynesia 0 116
Qatar Qatar 0.0294 +9.7% 36
Romania Romania 0.0029 -12.1% 92
Russia Russia 0.261 +8.53% 4
Rwanda Rwanda 0.0112 0% 63
Saudi Arabia Saudi Arabia 0.0723 +0.696% 17
Sudan Sudan 0.0769 -0.646% 16
Senegal Senegal 0.0075 0% 73
Singapore Singapore 0.0042 -2.33% 85
Solomon Islands Solomon Islands 0.0001 0% 115
Sierra Leone Sierra Leone 0.0146 0% 55
El Salvador El Salvador 0 116
Somalia Somalia 0.0439 0% 31
São Tomé & Príncipe São Tomé & Príncipe 0.0003 0% 113
Suriname Suriname 0.0001 0% 115
Slovakia Slovakia 0.0012 0% 106
Slovenia Slovenia 0 116
Sweden Sweden 0.0018 -5.26% 101
Eswatini Eswatini 0.0019 0% 100
Seychelles Seychelles 0 116
Syria Syria 0.0089 +2.3% 71
Turks & Caicos Islands Turks & Caicos Islands 0 116
Chad Chad 0.0175 -0.568% 49
Togo Togo 0.03 0% 35
Thailand Thailand 0.043 +0.939% 32
Tajikistan Tajikistan 0 116
Turkmenistan Turkmenistan 0.0117 +6.36% 62
Timor-Leste Timor-Leste 0.0003 -25% 113
Tonga Tonga 0 116
Trinidad & Tobago Trinidad & Tobago 0.0032 -5.88% 89
Tunisia Tunisia 0.0104 -4.59% 65
Turkey Turkey 0.0044 0% 84
Tanzania Tanzania 0.0636 0% 21
Uganda Uganda 0.106 0% 11
Ukraine Ukraine 0.0072 +1.41% 75
Uruguay Uruguay 0.0004 0% 112
United States United States 0.296 +5.19% 3
Uzbekistan Uzbekistan 0.0059 -4.84% 79
St. Vincent & Grenadines St. Vincent & Grenadines 0 116
Venezuela Venezuela 0.0819 -2.38% 14
British Virgin Islands British Virgin Islands 0 116
Vietnam Vietnam 0.0154 +4.05% 52
Vanuatu Vanuatu 0 116
Samoa Samoa 0 116
Yemen Yemen 0.0069 -23.3% 76
South Africa South Africa 0.217 -1.5% 5
Zambia Zambia 0.052 0% 27
Zimbabwe Zimbabwe 0.0008 +14.3% 109

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.FE.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.FE.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))