Nitrous oxide (N2O) emissions from Building (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0003 +50% 166
Afghanistan Afghanistan 0.0306 +0.658% 117
Angola Angola 0.21 +0.191% 46
Albania Albania 0.0197 +1.03% 125
United Arab Emirates United Arab Emirates 0.0028 0% 152
Argentina Argentina 1.15 -4.89% 14
Armenia Armenia 0.0293 +1.38% 118
Antigua & Barbuda Antigua & Barbuda 0.0001 0% 168
Australia Australia 1.73 +5.6% 8
Austria Austria 0.154 -0.195% 57
Azerbaijan Azerbaijan 0.107 +3.28% 74
Burundi Burundi 0.099 0% 76
Belgium Belgium 0.15 -4.59% 59
Benin Benin 0.0821 -0.122% 81
Burkina Faso Burkina Faso 0.166 -0.181% 55
Bangladesh Bangladesh 1.39 -5.1% 10
Bulgaria Bulgaria 0.0784 -2.12% 86
Bahrain Bahrain 0.0002 0% 167
Bahamas Bahamas 0.001 0% 162
Bosnia & Herzegovina Bosnia & Herzegovina 0.0813 +0.247% 83
Belarus Belarus 0.234 +0.992% 43
Belize Belize 0.0011 0% 161
Bermuda Bermuda 0.0002 +100% 167
Bolivia Bolivia 0.0854 +0.946% 80
Brazil Brazil 2.59 +1.68% 6
Barbados Barbados 0.0003 0% 166
Brunei Brunei 0 169
Bhutan Bhutan 0.0591 +0.169% 95
Botswana Botswana 0.021 +0.478% 124
Central African Republic Central African Republic 0.024 0% 121
Canada Canada 1.22 +0.893% 11
Switzerland Switzerland 0.0443 0% 106
Chile Chile 0.119 +0.338% 67
China China 11.1 +7.15% 1
Côte d’Ivoire Côte d’Ivoire 0.191 -0.47% 50
Cameroon Cameroon 0.273 0% 41
Congo - Kinshasa Congo - Kinshasa 0.722 0% 24
Congo - Brazzaville Congo - Brazzaville 0.0538 0% 98
Colombia Colombia 0.156 +0.773% 56
Comoros Comoros 0.0048 0% 146
Cape Verde Cape Verde 0.0039 -2.5% 149
Costa Rica Costa Rica 0.0165 +5.1% 128
Cuba Cuba 0.0354 +5.04% 114
Cayman Islands Cayman Islands 0.0002 +100% 167
Cyprus Cyprus 0.0085 0% 137
Czechia Czechia 0.213 -0.836% 45
Germany Germany 1.09 -3.65% 15
Djibouti Djibouti 0.006 0% 142
Dominica Dominica 0.0001 0% 168
Denmark Denmark 0.132 +0.609% 63
Dominican Republic Dominican Republic 0.0474 +2.82% 103
Algeria Algeria 0.0227 -2.16% 123
Ecuador Ecuador 0.0146 +3.55% 131
Egypt Egypt 0.307 -2.13% 35
Eritrea Eritrea 0.0395 +0.509% 113
Spain Spain 0.717 -1.56% 25
Estonia Estonia 0.0404 -2.18% 111
Ethiopia Ethiopia 2.98 +0.721% 5
Finland Finland 0.175 -5.21% 52
Fiji Fiji 0.0042 +2.44% 148
France France 1.18 -0.968% 12
Faroe Islands Faroe Islands 0 169
Gabon Gabon 0.0481 0% 101
United Kingdom United Kingdom 0.274 -0.653% 40
Georgia Georgia 0.0152 0% 130
Ghana Ghana 0.114 -0.612% 70
Gibraltar Gibraltar 0 169
Guinea Guinea 0.134 -0.0744% 61
Gambia Gambia 0.01 -0.99% 135
Guinea-Bissau Guinea-Bissau 0.0315 0% 116
Equatorial Guinea Equatorial Guinea 0.0042 0% 148
Greece Greece 0.0434 -0.23% 108
Grenada Grenada 0.0001 0% 168
Greenland Greenland 0.0008 0% 163
Guatemala Guatemala 0.333 0% 34
Guam Guam 0 169
Guyana Guyana 0.0176 +1.15% 127
Hong Kong SAR China Hong Kong SAR China 0.0008 +14.3% 163
Honduras Honduras 0.0677 +0.594% 90
Croatia Croatia 0.112 +1.36% 71
Haiti Haiti 0.0794 +0.126% 85
Hungary Hungary 0.172 -2.05% 53
Indonesia Indonesia 0.675 +0.148% 27
India India 8.39 +2.32% 2
Ireland Ireland 0.104 -2.62% 75
Iran Iran 0.932 -1.64% 19
Iraq Iraq 0.0159 +6% 129
Iceland Iceland 0.003 -6.25% 151
Israel Israel 0.0033 0% 150
Italy Italy 0.887 -1.12% 21
Jamaica Jamaica 0.0043 +2.38% 147
Jordan Jordan 0.0055 0% 143
Japan Japan 0.946 -3.84% 18
Kazakhstan Kazakhstan 0.272 +3.78% 42
Kenya Kenya 0.404 0% 32
Kyrgyzstan Kyrgyzstan 0.0109 +0.926% 134
Cambodia Cambodia 0.0797 0% 84
Kiribati Kiribati 0.0002 0% 167
St. Kitts & Nevis St. Kitts & Nevis 0.0001 168
South Korea South Korea 0.145 -2.63% 60
Kuwait Kuwait 0.001 0% 162
Laos Laos 0.0534 0% 99
Lebanon Lebanon 0.0066 0% 139
Liberia Liberia 0.11 -0.0911% 72
Libya Libya 0.01 0% 135
St. Lucia St. Lucia 0.0002 0% 167
Sri Lanka Sri Lanka 0.0871 +0.115% 79
Lesotho Lesotho 0.0663 -1.49% 93
Lithuania Lithuania 0.0409 -0.487% 110
Luxembourg Luxembourg 0.0097 -3% 136
Latvia Latvia 0.0648 -0.154% 94
Macao SAR China Macao SAR China 0.0048 +2.13% 146
Morocco Morocco 0.298 -0.701% 36
Moldova Moldova 0.0819 +0.368% 82
Madagascar Madagascar 0.203 0% 47
Maldives Maldives 0.0052 +1.96% 144
Mexico Mexico 0.902 +1.19% 20
North Macedonia North Macedonia 0.0119 +0.847% 133
Mali Mali 0.076 -0.393% 87
Malta Malta 0.0017 -5.56% 158
Myanmar (Burma) Myanmar (Burma) 0.818 +1.18% 22
Mongolia Mongolia 0.0437 +4.3% 107
Mozambique Mozambique 0.191 0% 49
Mauritania Mauritania 0.0339 -0.587% 115
Mauritius Mauritius 0.0008 0% 163
Malawi Malawi 0.0737 +0.136% 88
Malaysia Malaysia 0.168 +11.6% 54
Namibia Namibia 0.116 +2.94% 69
New Caledonia New Caledonia 0.0065 +1.56% 140
Niger Niger 0.133 +0.378% 62
Nigeria Nigeria 4.77 -0.00628% 4
Nicaragua Nicaragua 0.0524 +0.576% 100
Netherlands Netherlands 0.182 +1.62% 51
Norway Norway 0.0676 -0.148% 91
Nepal Nepal 0.62 +0.307% 28
New Zealand New Zealand 0.124 +6.26% 65
Oman Oman 0.0145 +3.57% 132
Pakistan Pakistan 1.52 -0.211% 9
Panama Panama 0.0081 0% 138
Peru Peru 0.118 +0.426% 68
Philippines Philippines 0.29 +0.836% 38
Palau Palau 0.003 +3.45% 151
Papua New Guinea Papua New Guinea 0.0668 +0.3% 92
Poland Poland 1.02 -1.25% 16
Puerto Rico Puerto Rico 0.0018 +5.88% 157
North Korea North Korea 0.0894 +4.56% 78
Portugal Portugal 0.128 -3.17% 64
Paraguay Paraguay 0.0409 0% 110
French Polynesia French Polynesia 0.0023 +4.55% 153
Qatar Qatar 0.0003 0% 166
Romania Romania 0.277 -0.144% 39
Russia Russia 1.79 +0.936% 7
Rwanda Rwanda 0.108 0% 73
Saudi Arabia Saudi Arabia 0.0043 +4.88% 147
Sudan Sudan 0.295 0% 37
Senegal Senegal 0.0398 0% 112
Singapore Singapore 0.0003 0% 166
Solomon Islands Solomon Islands 0.0022 0% 154
Sierra Leone Sierra Leone 0.0698 0% 89
El Salvador El Salvador 0.0064 +1.59% 141
Somalia Somalia 0.196 0% 48
São Tomé & Príncipe São Tomé & Príncipe 0.0017 +6.25% 158
Suriname Suriname 0.0456 +1.11% 105
Slovakia Slovakia 0.0473 +0.212% 104
Slovenia Slovenia 0.0417 -5.87% 109
Sweden Sweden 0.12 -1.55% 66
Eswatini Eswatini 0.018 +1.12% 126
Seychelles Seychelles 0.0021 +5% 155
Syria Syria 0.059 0% 96
Turks & Caicos Islands Turks & Caicos Islands 0.0001 0% 168
Chad Chad 0.0943 +0.106% 77
Togo Togo 0.0563 0% 97
Thailand Thailand 0.76 -0.223% 23
Tajikistan Tajikistan 0.0049 0% 145
Turkmenistan Turkmenistan 0.0253 -0.394% 120
Timor-Leste Timor-Leste 0.0019 0% 156
Tonga Tonga 0.0004 0% 165
Trinidad & Tobago Trinidad & Tobago 0.0007 0% 164
Tunisia Tunisia 0.151 -0.593% 58
Turkey Turkey 1.16 +4.27% 13
Tanzania Tanzania 0.685 0% 26
Uganda Uganda 0.485 0% 29
Ukraine Ukraine 0.41 +1.13% 31
Uruguay Uruguay 0.0479 +0.63% 102
United States United States 5.88 +0.92% 3
Uzbekistan Uzbekistan 0.0282 +6.42% 119
St. Vincent & Grenadines St. Vincent & Grenadines 0.0001 0% 168
Venezuela Venezuela 0.0085 +2.41% 137
British Virgin Islands British Virgin Islands 0 169
U.S. Virgin Islands U.S. Virgin Islands 0 169
Vietnam Vietnam 0.954 +10.9% 17
Vanuatu Vanuatu 0.0015 +7.14% 160
Samoa Samoa 0.0016 +6.67% 159
Yemen Yemen 0.0234 0% 122
South Africa South Africa 0.472 +1.07% 30
Zambia Zambia 0.228 0% 44
Zimbabwe Zimbabwe 0.37 +0.027% 33

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.BU.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.BU.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))