Nitrous oxide (N2O) emissions from Agriculture (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.001 0% 192
Afghanistan Afghanistan 3.01 -0.0199% 77
Angola Angola 3.45 +1.66% 71
Albania Albania 0.585 -4.13% 126
United Arab Emirates United Arab Emirates 0.529 +1.63% 129
Argentina Argentina 36.1 +3.14% 9
Armenia Armenia 0.312 +1.4% 136
American Samoa American Samoa 0.001 0% 192
Antigua & Barbuda Antigua & Barbuda 0.005 -3.85% 180
Australia Australia 36.2 +0.466% 8
Austria Austria 1.87 -0.726% 96
Azerbaijan Azerbaijan 1.67 +1.42% 102
Burundi Burundi 0.842 +0.862% 117
Belgium Belgium 2.42 -0.506% 82
Benin Benin 1.5 +4.34% 104
Burkina Faso Burkina Faso 5.88 +1.12% 50
Bangladesh Bangladesh 21.5 +2.24% 17
Bulgaria Bulgaria 3.18 +0.246% 75
Bahrain Bahrain 0.0122 +2.52% 171
Bahamas Bahamas 0.0098 +1.03% 174
Bosnia & Herzegovina Bosnia & Herzegovina 0.467 -2.79% 131
Belarus Belarus 8.01 +0.961% 40
Belize Belize 0.0939 +0.535% 156
Bermuda Bermuda 0.0008 0% 193
Bolivia Bolivia 5.45 +2.1% 53
Brazil Brazil 146 +0.745% 3
Barbados Barbados 0.0211 +0.476% 166
Brunei Brunei 0.0956 +1.38% 155
Bhutan Bhutan 0.0658 -1.94% 161
Botswana Botswana 0.53 -1.98% 128
Central African Republic Central African Republic 2.67 +1.2% 80
Canada Canada 23.8 -0.27% 14
Switzerland Switzerland 1.46 +2.78% 105
Chile Chile 4.3 +1.56% 58
China China 239 -1.33% 1
Côte d’Ivoire Côte d’Ivoire 1.98 +3.45% 95
Cameroon Cameroon 3.62 +0.884% 66
Congo - Kinshasa Congo - Kinshasa 2.08 +2.75% 92
Congo - Brazzaville Congo - Brazzaville 0.26 +0.077% 139
Colombia Colombia 17 +0.22% 21
Comoros Comoros 0.0298 0% 164
Cape Verde Cape Verde 0.0363 0% 163
Costa Rica Costa Rica 1.36 +0.2% 107
Cuba Cuba 3.89 -1.61% 64
Cayman Islands Cayman Islands 0.0013 0% 190
Cyprus Cyprus 0.151 +1.27% 147
Czechia Czechia 2.78 -0.366% 79
Germany Germany 19.7 -2.1% 19
Djibouti Djibouti 0.169 -0.177% 146
Dominica Dominica 0.0084 0% 176
Denmark Denmark 3.7 -2.57% 65
Dominican Republic Dominican Republic 2.24 +0.809% 85
Algeria Algeria 3.35 -0.0536% 72
Ecuador Ecuador 3.53 +0.267% 70
Egypt Egypt 9.91 -2.07% 33
Eritrea Eritrea 1.13 +0.32% 112
Spain Spain 12.9 -3.75% 30
Estonia Estonia 0.682 -1.16% 124
Ethiopia Ethiopia 33.1 +2.4% 10
Finland Finland 2.23 -1.65% 86
Fiji Fiji 0.134 -0.52% 152
France France 23.4 -0.78% 15
Faroe Islands Faroe Islands 0.0062 0% 179
Micronesia (Federated States of) Micronesia (Federated States of) 0.012 +1.69% 172
Gabon Gabon 0.0817 +0.369% 158
United Kingdom United Kingdom 14.3 -2.07% 27
Georgia Georgia 0.665 +2.38% 125
Ghana Ghana 2.22 +3.43% 87
Guinea Guinea 3.62 +4.39% 67
Gambia Gambia 0.148 -3.34% 149
Guinea-Bissau Guinea-Bissau 0.427 +0.85% 132
Equatorial Guinea Equatorial Guinea 0.0097 0% 175
Greece Greece 2.01 -3.13% 94
Grenada Grenada 0.0042 0% 183
Greenland Greenland 0.0012 0% 191
Guatemala Guatemala 3.35 +1.38% 73
Guam Guam 0.0019 0% 188
Guyana Guyana 1.34 +0.173% 108
Hong Kong SAR China Hong Kong SAR China 0.0152 +0.662% 169
Honduras Honduras 1.86 +0.0754% 98
Croatia Croatia 1.13 -2.02% 111
Haiti Haiti 0.998 -0.21% 115
Hungary Hungary 4.02 +9.81% 61
Indonesia Indonesia 65.3 +1.14% 5
India India 192 +1.83% 2
Ireland Ireland 6.5 -0.33% 49
Iran Iran 16.6 +2.62% 22
Iraq Iraq 2.28 +0.688% 84
Iceland Iceland 0.25 -0.12% 141
Israel Israel 1.02 -0.177% 114
Italy Italy 9.07 +0.356% 36
Jamaica Jamaica 0.177 -0.0564% 144
Jordan Jordan 0.37 -0.269% 135
Japan Japan 5.21 -0.906% 54
Kazakhstan Kazakhstan 13.1 -1.47% 29
Kenya Kenya 15.5 +4.43% 24
Kyrgyzstan Kyrgyzstan 1.79 +0.904% 100
Cambodia Cambodia 2.15 -0.172% 89
Kiribati Kiribati 0.0031 0% 185
St. Kitts & Nevis St. Kitts & Nevis 0.0046 +6.98% 181
South Korea South Korea 5.57 -1.49% 52
Kuwait Kuwait 0.175 +1.81% 145
Laos Laos 2.38 +3% 83
Lebanon Lebanon 0.264 -1.31% 138
Liberia Liberia 0.134 +1.05% 151
Libya Libya 0.809 +0.622% 120
St. Lucia St. Lucia 0.0082 -1.2% 177
Sri Lanka Sri Lanka 0.752 -5.7% 122
Lesotho Lesotho 0.251 -7.76% 140
Lithuania Lithuania 2.12 +0.341% 90
Luxembourg Luxembourg 0.129 0% 153
Latvia Latvia 1.39 -1.56% 106
Macao SAR China Macao SAR China 0.0015 0% 189
Morocco Morocco 4.01 +0.636% 63
Moldova Moldova 0.79 +10.2% 121
Madagascar Madagascar 4.23 -2.58% 59
Maldives Maldives 0 195
Mexico Mexico 30.2 +0.326% 11
Marshall Islands Marshall Islands 0 195
North Macedonia North Macedonia 0.233 -4.28% 142
Mali Mali 8.85 +1.95% 38
Malta Malta 0.0157 0% 168
Myanmar (Burma) Myanmar (Burma) 9.03 -8.46% 37
Mongolia Mongolia 7.34 +2.19% 43
Northern Mariana Islands Northern Mariana Islands 0 195
Mozambique Mozambique 1.84 +4.4% 99
Mauritania Mauritania 2.09 +0.807% 91
Mauritius Mauritius 0.0852 -0.815% 157
Malawi Malawi 3.54 +7.44% 69
Malaysia Malaysia 7.05 -1.29% 45
Namibia Namibia 1.73 -0.564% 101
New Caledonia New Caledonia 0.0453 -0.658% 162
Niger Niger 9.84 +4.2% 34
Nigeria Nigeria 24.4 +3.78% 13
Nicaragua Nicaragua 3.32 +0.145% 74
Netherlands Netherlands 4.86 -0.412% 55
Norway Norway 1.53 -0.365% 103
Nepal Nepal 4.48 +1.81% 57
Nauru Nauru 0.0002 0% 194
New Zealand New Zealand 9.72 -0.603% 35
Oman Oman 0.499 +1.96% 130
Pakistan Pakistan 52.1 +2.34% 6
Panama Panama 0.741 -0.148% 123
Peru Peru 6.62 +2.71% 47
Philippines Philippines 8.25 -0.348% 39
Palau Palau 0 195
Papua New Guinea Papua New Guinea 0.269 +0.561% 137
Poland Poland 14.3 -1.08% 26
Puerto Rico Puerto Rico 0.123 -0.162% 154
North Korea North Korea 1.03 -0.76% 113
Portugal Portugal 2.05 +0.196% 93
Paraguay Paraguay 5.74 -0.288% 51
French Polynesia French Polynesia 0.0107 +0.943% 173
Qatar Qatar 0.148 +1.23% 148
Romania Romania 7.28 +3.16% 44
Russia Russia 41.6 +1.21% 7
Rwanda Rwanda 0.824 -2.78% 119
Saudi Arabia Saudi Arabia 4.01 +6.34% 62
Sudan Sudan 25.7 +0.585% 12
Senegal Senegal 2.82 +1.67% 78
Singapore Singapore 0.0079 -1.25% 178
Solomon Islands Solomon Islands 0.0147 0% 170
Sierra Leone Sierra Leone 0.548 +2.51% 127
El Salvador El Salvador 0.827 +0.133% 118
Somalia Somalia 4.12 -0.56% 60
São Tomé & Príncipe São Tomé & Príncipe 0.0098 +3.16% 174
Suriname Suriname 0.0756 +0.265% 159
Slovakia Slovakia 1.3 +4.59% 109
Slovenia Slovenia 0.383 -2.07% 133
Sweden Sweden 3.02 -3.54% 76
Eswatini Eswatini 0.379 +0.265% 134
Seychelles Seychelles 0.002 +5.26% 187
Syria Syria 2.17 +9.26% 88
Chad Chad 20.5 +4.86% 18
Togo Togo 0.974 +4.41% 116
Thailand Thailand 12.1 -1.35% 32
Tajikistan Tajikistan 1.87 +1.72% 97
Turkmenistan Turkmenistan 4.68 -0.447% 56
Timor-Leste Timor-Leste 0.192 +0.262% 143
Tonga Tonga 0.0197 0% 167
Trinidad & Tobago Trinidad & Tobago 0.146 +1.25% 150
Tunisia Tunisia 1.24 -2.26% 110
Turkey Turkey 21.9 +1.84% 16
Tuvalu Tuvalu 0.0012 0% 191
Tanzania Tanzania 14.4 +2.48% 25
Uganda Uganda 7.89 +0.62% 41
Ukraine Ukraine 18.1 +5.54% 20
Uruguay Uruguay 6.51 +0.615% 48
United States United States 131 -0.541% 4
Uzbekistan Uzbekistan 12.3 -0.612% 31
St. Vincent & Grenadines St. Vincent & Grenadines 0.0044 -2.22% 182
Venezuela Venezuela 7.78 -1.08% 42
British Virgin Islands British Virgin Islands 0.0024 0% 186
U.S. Virgin Islands U.S. Virgin Islands 0.0041 +2.5% 184
Vietnam Vietnam 16.2 -0.177% 23
Vanuatu Vanuatu 0.0666 -0.299% 160
Samoa Samoa 0.0281 -3.1% 165
Yemen Yemen 2.47 +2.11% 81
South Africa South Africa 13.6 +1.68% 28
Zambia Zambia 6.84 +2.83% 46
Zimbabwe Zimbabwe 3.58 +1.05% 68

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.N2O.AG.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.N2O.AG.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))