Net official flows from UN agencies, IFAD (current US$)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 1,404,280 -88.1% 42
Angola Angola 1,069,690 -236% 47
Albania Albania -1,660,640 -4.89% 85
Armenia Armenia -3,605,050 +0.982% 88
Azerbaijan Azerbaijan -2,949,390 +27.5% 87
Burundi Burundi 8,814,960 -12.9% 20
Benin Benin 7,033,700 -5.36% 24
Burkina Faso Burkina Faso 25,058,769 +23.1% 8
Bangladesh Bangladesh 71,008,148 +108% 1
Bosnia & Herzegovina Bosnia & Herzegovina -2,887,850 +53.4% 86
Bolivia Bolivia 850,630 -150% 53
Bhutan Bhutan 1,229,970 -31.4% 45
Central African Republic Central African Republic 4,797,200 +157% 28
China China -17,701,969 -4.13% 95
Côte d’Ivoire Côte d’Ivoire 4,451,540 -11.9% 29
Cameroon Cameroon 8,897,690 +87.7% 19
Congo - Kinshasa Congo - Kinshasa 5,405,380 +11.2% 27
Congo - Brazzaville Congo - Brazzaville -789,000 -164% 78
Colombia Colombia -1,116,180 +7.95% 79
Comoros Comoros 1,677,900 +386% 38
Cape Verde Cape Verde 1,047,970 -59.2% 48
Cuba Cuba 22,170 -90.2% 63
Djibouti Djibouti 1,540,620 -23.4% 40
Dominica Dominica -38,260 -4.35% 64
Ecuador Ecuador -401,170 -4.94% 75
Egypt Egypt -10,249,060 -1.24% 94
Eritrea Eritrea 2,140,650 +144% 36
Ethiopia Ethiopia 36,257,019 +14.5% 3
Georgia Georgia -1,615,320 -6.25% 84
Ghana Ghana 15,844,730 -29.4% 13
Guinea Guinea 4,286,650 +163% 30
Gambia Gambia 2,469,650 +325% 35
Guinea-Bissau Guinea-Bissau 1,277,660 +4.3% 44
Equatorial Guinea Equatorial Guinea -63,120 -4.36% 65
Grenada Grenada 1,092,350 -14.7% 46
Guatemala Guatemala -188,720 -4.69% 69
Guyana Guyana 2,064,280 -666% 37
Honduras Honduras -1,416,940 +69.7% 82
Haiti Haiti 903,240 -32.3% 50
Indonesia Indonesia -6,203,040 -10.2% 92
India India -4,699,200 -157% 91
Iraq Iraq 500,000 +150% 57
Jordan Jordan -374,980 +53.7% 72
Kenya Kenya 26,954,359 +29.8% 7
Kyrgyzstan Kyrgyzstan 2,811,090 +51.1% 32
Cambodia Cambodia 29,001,160 +138% 5
Kiribati Kiribati 1,330,000 +46.6% 43
Laos Laos 1,574,350 -253% 39
Liberia Liberia 18,110,439 +55.5% 11
Sri Lanka Sri Lanka 786,970 +84.7% 54
Lesotho Lesotho 2,675,210 +85.9% 34
Morocco Morocco -772,740 -52.6% 77
Moldova Moldova -178,380 -108% 68
Madagascar Madagascar 9,531,720 -28.6% 17
Maldives Maldives -218,810 -13.5% 70
Mexico Mexico 536,380 +42.7% 56
North Macedonia North Macedonia -519,900 -4.95% 76
Mali Mali 10,827,120 +90% 16
Montenegro Montenegro 102,240 -73.6% 60
Mongolia Mongolia 229,920 -71.4% 59
Mozambique Mozambique 17,972,549 +53.4% 12
Mauritania Mauritania 6,086,670 +84.6% 25
Malawi Malawi 34,129,639 +103% 4
Niger Niger 20,368,660 +33.2% 9
Nigeria Nigeria 27,323,021 +34.1% 6
Nicaragua Nicaragua 1,489,480 -28.4% 41
Nepal Nepal 5,918,310 -54.4% 26
Pakistan Pakistan 55,699,219 +67.3% 2
Philippines Philippines -4,032,410 +230% 90
Papua New Guinea Papua New Guinea -1,155,760 -163% 80
Paraguay Paraguay 623,120 -213% 55
Palestinian Territories Palestinian Territories -106,470 -125% 67
Rwanda Rwanda 20,231,140 +47% 10
Sudan Sudan 8,948,730 -1,560% 18
Senegal Senegal 2,680,090 -10.3% 33
Solomon Islands Solomon Islands -83,670 -4.92% 66
Sierra Leone Sierra Leone 8,602,980 +58.8% 22
El Salvador El Salvador 867,560 -443% 52
Somalia Somalia -1,456,720 -43.1% 83
South Sudan South Sudan 899,860 -8.16% 51
São Tomé & Príncipe São Tomé & Príncipe 968,770 +200% 49
Eswatini Eswatini -292,580 -75.6% 71
Syria Syria -395,380 +2.43% 74
Chad Chad 13,682,220 +160% 14
Togo Togo -377,480 -112% 73
Tajikistan Tajikistan 7,156,790 -28.2% 23
Tonga Tonga 307,170 -69.4% 58
Tunisia Tunisia 68,210 -73.3% 61
Tanzania Tanzania -6,532,750 -35.4% 93
Uganda Uganda 4,216,570 -11.7% 31
Uzbekistan Uzbekistan 8,728,560 -65.6% 21
Vietnam Vietnam -3,685,850 -190% 89
Samoa Samoa 62,060 +590% 62
Zambia Zambia -1,177,910 -12.8% 81
Zimbabwe Zimbabwe 11,389,080 +242% 15

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'DT.NFL.IFAD.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'DT.NFL.IFAD.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))