Net financial flows, RDB concessional (NFL, current US$)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan -1,692,000 52
Angola Angola -2,195,845 +23.1% 55
Argentina Argentina -996,000 -102% 47
Armenia Armenia -3,792,000 -60.6% 60
Azerbaijan Azerbaijan -3,903,000 +0.515% 61
Burundi Burundi -769,746 -5.24% 46
Benin Benin 41,695,703 +47,833% 8
Burkina Faso Burkina Faso 1,762,279 -156% 33
Bangladesh Bangladesh 515,833,000 +654% 1
Bolivia Bolivia -20,177,000 -0.811% 80
Bhutan Bhutan 7,992,000 -81.3% 23
Botswana Botswana -2,889,550 +1.04% 58
Central African Republic Central African Republic -13,341 41
Côte d’Ivoire Côte d’Ivoire 20,681,763 +72.2% 15
Cameroon Cameroon 10,421,591 -58.9% 20
Congo - Kinshasa Congo - Kinshasa 32,317,339 +53.9% 10
Congo - Brazzaville Congo - Brazzaville 2,616,070 +265% 30
Colombia Colombia -2,666,000 -7.53% 57
Comoros Comoros 4,523,760 +123% 27
Cape Verde Cape Verde -4,042,169 +5.72% 62
Djibouti Djibouti 2,062,440 -53.3% 31
Dominican Republic Dominican Republic -6,321,000 -23.4% 67
Ecuador Ecuador -15,971,000 -11% 76
Egypt Egypt -6,779,637 -0.646% 69
Eritrea Eritrea 1,736,932 -196% 34
Ethiopia Ethiopia -5,513,625 -130% 64
Fiji Fiji 0 -100% 40
Gabon Gabon -58,698 +2% 43
Georgia Georgia -66,293,000 +1.81% 86
Ghana Ghana -9,630,500 +246% 72
Guinea Guinea 25,390,956 -5.29% 14
Gambia Gambia -1,055,233 +24.4% 48
Guinea-Bissau Guinea-Bissau 1,815,641 -28.7% 32
Guatemala Guatemala -7,243,000 -21.4% 70
Guyana Guyana -11,324,000 0% 74
Honduras Honduras -18,195,000 -6.95% 79
Indonesia Indonesia -50,799,000 -28.6% 84
Jamaica Jamaica -33,000 -50% 42
Jordan Jordan 0 40
Kazakhstan Kazakhstan -544,000 +0.928% 45
Kenya Kenya 28,284,509 +19.6% 13
Kyrgyzstan Kyrgyzstan 14,076,000 -77.7% 16
Cambodia Cambodia 291,533,000 +69.4% 3
Laos Laos -28,796,000 +1,728% 82
Liberia Liberia 31,327,474 +200% 11
Sri Lanka Sri Lanka 104,098,000 -187% 4
Lesotho Lesotho -1,590,187 -23% 50
Morocco Morocco -1,467,454 -0.495% 49
Madagascar Madagascar 13,185,741 +188% 18
Maldives Maldives 241,000 -128% 38
Mexico Mexico -10,000,000 73
Mali Mali 5,577,659 -200% 25
Myanmar (Burma) Myanmar (Burma) -32,591,000 +3.97% 83
Mongolia Mongolia -16,750,000 -253% 78
Mozambique Mozambique -1,815,641 -199% 53
Mauritania Mauritania 1,671,564 +1.88% 35
Mauritius Mauritius -148,079 +3.41% 44
Malawi Malawi 34,598,563 +222% 9
Niger Niger 9,968,015 -67.8% 21
Nigeria Nigeria 12,702,815 -55.7% 19
Nicaragua Nicaragua -21,431,000 0% 81
Nepal Nepal 354,948,000 +147% 2
Pakistan Pakistan -301,228,000 -240% 87
Peru Peru 1,374,000 -33.5% 37
Philippines Philippines -5,467,000 -44.7% 63
Papua New Guinea Papua New Guinea -16,705,000 +3.66% 77
Paraguay Paraguay -8,390,000 -18.8% 71
Rwanda Rwanda 56,128,780 +336% 7
Sudan Sudan -6,763,629 +0.0608% 68
Senegal Senegal 7,378,626 -30.6% 24
Solomon Islands Solomon Islands 9,668,000 +5.68% 22
Sierra Leone Sierra Leone 3,053,638 -58.4% 29
El Salvador El Salvador -5,574,000 -49.1% 65
Somalia Somalia -3,280,427 +48.3% 59
São Tomé & Príncipe São Tomé & Príncipe 65,369 -82.7% 39
Suriname Suriname 0 40
Eswatini Eswatini -2,111,800 +0.768% 54
Chad Chad -2,600,062 +8% 56
Togo Togo 1,586,184 -53.8% 36
Tajikistan Tajikistan -12,880,000 -679% 75
Timor-Leste Timor-Leste 4,007,000 -36.4% 28
Tonga Tonga -1,655,000 +7.82% 51
Tunisia Tunisia 0 -100% 40
Tanzania Tanzania 89,403,966 +31.6% 5
Uganda Uganda 85,317,774 +31.5% 6
Uzbekistan Uzbekistan 30,602,000 -85.9% 12
Vietnam Vietnam -55,347,000 -54.6% 85
Vanuatu Vanuatu 4,818,000 -8.85% 26
Samoa Samoa -5,853,000 +112% 66
Zambia Zambia 13,678,005 +59.9% 17
Zimbabwe Zimbabwe 0 40

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'DT.NFL.RDBC.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'DT.NFL.RDBC.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))