Net bilateral aid flows from DAC donors, Poland (current US$)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 310,000 -69.9% 37
Angola Angola -2,270,000 -6.2% 63
Albania Albania 200,000 +25% 42
Argentina Argentina 50,000 +25% 55
Armenia Armenia 640,000 -64.6% 28
Azerbaijan Azerbaijan 2,680,000 +2.29% 12
Burundi Burundi 480,000 +300% 32
Benin Benin 10,000 0% 58
Bangladesh Bangladesh 550,000 -96.9% 31
Bosnia & Herzegovina Bosnia & Herzegovina -10,000 -96.2% 60
Belarus Belarus 48,439,999 -13.9% 2
Belize Belize 10,000 0% 58
Bolivia Bolivia 20,000 -50% 57
Brazil Brazil 340,000 -34.6% 35
Botswana Botswana 30,000 +50% 56
China China -10,760,000 -2.54% 65
Côte d’Ivoire Côte d’Ivoire 10,000 -50% 58
Cameroon Cameroon 230,000 -54.9% 40
Congo - Kinshasa Congo - Kinshasa 1,140,000 +1,040% 19
Congo - Brazzaville Congo - Brazzaville 50,000 -37.5% 55
Colombia Colombia 300,000 -28.6% 38
Comoros Comoros 50,000 0% 55
Cape Verde Cape Verde 0 59
Costa Rica Costa Rica 20,000 -33.3% 57
Cuba Cuba 10,000 -75% 58
Dominica Dominica 20,000 57
Dominican Republic Dominican Republic 20,000 0% 57
Algeria Algeria 740,000 +164% 27
Ecuador Ecuador 150,000 -25% 46
Egypt Egypt 920,000 -73.8% 21
Eritrea Eritrea 10,000 -75% 58
Ethiopia Ethiopia -4,150,000 -289% 64
Georgia Georgia 2,490,000 -46.3% 14
Ghana Ghana 330,000 -38.9% 36
Guinea Guinea 10,000 0% 58
Gambia Gambia 30,000 +50% 56
Grenada Grenada 0 -100% 59
Guatemala Guatemala 10,000 -50% 58
Honduras Honduras 10,000 58
Haiti Haiti 10,000 0% 58
Indonesia Indonesia 750,000 -39% 26
India India 5,690,000 -17.7% 6
Iran Iran 7,550,000 +5.3% 5
Iraq Iraq 1,550,000 -25.8% 17
Jamaica Jamaica 30,000 0% 56
Jordan Jordan 1,640,000 +105% 16
Kazakhstan Kazakhstan 1,730,000 -9.42% 15
Kenya Kenya 1,730,000 -56.3% 15
Kyrgyzstan Kyrgyzstan 20,000 -95.7% 57
Cambodia Cambodia 3,000,000 +14,900% 10
Laos Laos 0 -100% 59
Lebanon Lebanon 2,550,000 -1.16% 13
Liberia Liberia 10,000 -75% 58
Libya Libya 30,000 -70% 56
St. Lucia St. Lucia 170,000 44
Sri Lanka Sri Lanka 90,000 -47.1% 52
Lesotho Lesotho 0 59
Morocco Morocco 380,000 -7.32% 34
Moldova Moldova 26,299,999 +987% 3
Madagascar Madagascar 60,000 0% 54
Mexico Mexico 340,000 -29.2% 35
North Macedonia North Macedonia 210,000 -81.7% 41
Mali Mali 10,000 -50% 58
Myanmar (Burma) Myanmar (Burma) 340,000 +113% 35
Montenegro Montenegro -640,000 +129% 62
Mongolia Mongolia 4,350,000 +1,454% 7
Mozambique Mozambique 10,000 -75% 58
Mauritania Mauritania 0 -100% 59
Mauritius Mauritius 0 -100% 59
Malawi Malawi 20,000 -33.3% 57
Malaysia Malaysia 280,000 -15.2% 39
Namibia Namibia 30,000 -25% 56
Niger Niger 200,000 -78.5% 42
Nigeria Nigeria 2,700,000 -45.8% 11
Nicaragua Nicaragua 10,000 58
Nepal Nepal 120,000 -25% 49
Pakistan Pakistan 1,080,000 -21.2% 20
Panama Panama 10,000 -50% 58
Peru Peru 120,000 -40% 49
Philippines Philippines 130,000 -95.7% 48
Papua New Guinea Papua New Guinea 30,000 0% 56
North Korea North Korea 10,000 -75% 58
Palestinian Territories Palestinian Territories 3,930,000 +159% 8
Rwanda Rwanda 580,000 -72.9% 29
Sudan Sudan 180,000 +125% 43
Senegal Senegal 400,000 +17.6% 33
Sierra Leone Sierra Leone 100,000 +150% 51
El Salvador El Salvador 20,000 -50% 57
Somalia Somalia 20,000 -98.9% 57
Serbia Serbia -600,000 -600% 61
South Sudan South Sudan 160,000 -15.8% 45
Eswatini Eswatini 10,000 0% 58
Syria Syria 1,240,000 -25.3% 18
Chad Chad 0 59
Togo Togo 0 -100% 59
Thailand Thailand 560,000 -30% 30
Tajikistan Tajikistan 140,000 -44% 47
Turkmenistan Turkmenistan 170,000 +13.3% 44
Tunisia Tunisia 330,000 -90.6% 36
Turkey Turkey 8,700,000 -7.25% 4
Tanzania Tanzania 3,810,000 +25.7% 9
Uganda Uganda 110,000 -21.4% 50
Ukraine Ukraine 317,619,995 +235% 1
Uzbekistan Uzbekistan 230,000 -87.7% 40
Venezuela Venezuela 820,000 +583% 24
Vietnam Vietnam 150,000 -98.7% 46
Kosovo Kosovo 910,000 0% 22
Yemen Yemen 780,000 0% 25
South Africa South Africa 130,000 -18.8% 48
Zambia Zambia 70,000 +133% 53
Zimbabwe Zimbabwe 840,000 -3.45% 23

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'DC.DAC.POLL.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'DC.DAC.POLL.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))