Net barter terms of trade index (2015 = 100)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 95.7 +31.3% 119
Afghanistan Afghanistan 101 +4.99% 91
Angola Angola 129 -22.8% 16
Albania Albania 76.4 -34% 172
Andorra Andorra 94.8 +3.04% 125
United Arab Emirates United Arab Emirates 111 -9.38% 52
Argentina Argentina 109 -4.2% 57
Armenia Armenia 103 +4.67% 78
American Samoa American Samoa 203 +11.4% 1
Antigua & Barbuda Antigua & Barbuda 86.9 +8.49% 155
Australia Australia 172 -4.86% 2
Austria Austria 95.5 +1.6% 120
Azerbaijan Azerbaijan 116 -32.9% 40
Burundi Burundi 104 +1.97% 75
Belgium Belgium 98.6 +1.54% 103
Benin Benin 102 -9.65% 84
Burkina Faso Burkina Faso 107 +10.3% 63
Bangladesh Bangladesh 80.9 +9.47% 166
Bulgaria Bulgaria 97.3 +0.309% 108
Bahrain Bahrain 129 -7.08% 17
Bahamas Bahamas 101 +2.53% 88
Bosnia & Herzegovina Bosnia & Herzegovina 107 -1.66% 65
Belarus Belarus 124 +17.1% 24
Belize Belize 96.1 +16.5% 116
Bermuda Bermuda 126 -0.863% 21
Bolivia Bolivia 80.4 -0.618% 168
Brazil Brazil 117 +2.36% 36
Barbados Barbados 97.8 +5.62% 107
Brunei Brunei 112 -17.7% 51
Bhutan Bhutan 129 -26.6% 18
Botswana Botswana 82.1 +6.21% 165
Central African Republic Central African Republic 101 +4.87% 89
Canada Canada 110 -9.25% 55
Switzerland Switzerland 95.8 -1.74% 118
Chile Chile 130 +3.76% 15
China China 90.2 +0.782% 146
Côte d’Ivoire Côte d’Ivoire 91.8 +13.6% 141
Cameroon Cameroon 110 -11.8% 56
Congo - Kinshasa Congo - Kinshasa 134 -3.95% 12
Congo - Brazzaville Congo - Brazzaville 114 -10.3% 47
Colombia Colombia 139 -9.73% 8
Comoros Comoros 65.3 +0.616% 175
Cape Verde Cape Verde 95 +5.56% 124
Costa Rica Costa Rica 89.6 +2.05% 148
Cuba Cuba 98.2 +5.36% 105
Cayman Islands Cayman Islands 142 -0.768% 6
Cyprus Cyprus 84.2 -2.09% 162
Czechia Czechia 99.5 +4.52% 97
Germany Germany 102 +5.61% 87
Djibouti Djibouti 94.3 +2.61% 127
Dominica Dominica 68 +9.32% 173
Denmark Denmark 95.7 +1.48% 119
Dominican Republic Dominican Republic 99.2 +5.76% 100
Algeria Algeria 98.8 -34.5% 102
Ecuador Ecuador 108 -5.59% 61
Egypt Egypt 110 -7.16% 54
Eritrea Eritrea 95.7 -4.78% 119
Spain Spain 95.5 +2.69% 120
Estonia Estonia 100 +1.93% 94
Ethiopia Ethiopia 103 +2.59% 79
Finland Finland 95.9 -0.622% 117
Fiji Fiji 99.3 +10.7% 99
France France 96.5 +1.79% 114
Faroe Islands Faroe Islands 103 -0.676% 80
Micronesia (Federated States of) Micronesia (Federated States of) 98.8 +4.66% 102
Gabon Gabon 119 -12.3% 30
United Kingdom United Kingdom 91.1 +0.886% 143
Georgia Georgia 97.2 +1.99% 109
Ghana Ghana 118 +6.03% 31
Gibraltar Gibraltar 49.2 -41.1% 181
Guinea Guinea 113 -6.98% 48
Gambia Gambia 100 +4.92% 95
Guinea-Bissau Guinea-Bissau 116 +24% 42
Equatorial Guinea Equatorial Guinea 127 -34.9% 20
Greece Greece 95.4 +2.25% 121
Grenada Grenada 82.3 +5.92% 164
Greenland Greenland 89.1 -0.558% 150
Guatemala Guatemala 95.3 +1.38% 122
Guam Guam 109 -2.85% 58
Guyana Guyana 141 -9.42% 7
Hong Kong SAR China Hong Kong SAR China 100 +0.4% 95
Honduras Honduras 93.9 -1.37% 129
Croatia Croatia 87.6 -2.45% 153
Haiti Haiti 82.1 +2.37% 165
Hungary Hungary 102 +8.96% 83
Indonesia Indonesia 108 -13.3% 60
India India 87.5 +7.49% 154
Ireland Ireland 67.5 -5.06% 174
Iran Iran 109 -17.3% 59
Iraq Iraq 122 -15.1% 26
Iceland Iceland 92.4 -7.6% 138
Israel Israel 92.6 +1.42% 136
Italy Italy 101 +12% 92
Jamaica Jamaica 99.4 -12.3% 98
Jordan Jordan 98.5 -1.5% 104
Japan Japan 86.5 +9.08% 157
Kazakhstan Kazakhstan 125 -13.7% 23
Kenya Kenya 91.9 +6.24% 140
Kyrgyzstan Kyrgyzstan 107 -0.557% 64
Cambodia Cambodia 83.9 +3.71% 163
Kiribati Kiribati 102 -4.94% 85
St. Kitts & Nevis St. Kitts & Nevis 102 +2.51% 84
South Korea South Korea 85.4 -0.117% 159
Kuwait Kuwait 134 -18.4% 11
Laos Laos 156 -14% 4
Lebanon Lebanon 95.9 +7.75% 117
Liberia Liberia 117 +2.37% 38
Libya Libya 126 -14.2% 22
St. Lucia St. Lucia 92.9 +11.4% 134
Sri Lanka Sri Lanka 85.6 -3.39% 158
Lesotho Lesotho 84.7 +7.62% 161
Lithuania Lithuania 103 +4.91% 82
Luxembourg Luxembourg 90.9 -6.48% 144
Latvia Latvia 104 +1.16% 73
Macao SAR China Macao SAR China 93.1 -0.957% 133
Morocco Morocco 90.8 +3.06% 145
Moldova Moldova 90.9 -8.92% 144
Madagascar Madagascar 84.7 -0.703% 161
Maldives Maldives 91.7 -9.83% 142
Mexico Mexico 101 +2.12% 90
Marshall Islands Marshall Islands 98.1 +4.03% 106
North Macedonia North Macedonia 93.5 +6.25% 130
Mali Mali 118 +13.7% 33
Malta Malta 101 +1.11% 93
Myanmar (Burma) Myanmar (Burma) 120 -1.97% 29
Mongolia Mongolia 110 -25.7% 53
Northern Mariana Islands Northern Mariana Islands 55.9 -54% 179
Mozambique Mozambique 122 -21.4% 27
Mauritania Mauritania 115 +6.39% 44
Mauritius Mauritius 88.2 +18.1% 151
Malawi Malawi 87.8 +12.7% 152
Malaysia Malaysia 112 -0.179% 50
Namibia Namibia 105 +4.6% 71
New Caledonia New Caledonia 117 -10.1% 35
Niger Niger 108 +4.05% 61
Nigeria Nigeria 128 -13.2% 19
Nicaragua Nicaragua 118 +16.5% 32
Netherlands Netherlands 95.7 +2.9% 119
Norway Norway 123 -33.5% 25
Nepal Nepal 96.7 -0.922% 113
Nauru Nauru 58.1 -10.8% 177
New Zealand New Zealand 105 -6.08% 69
Oman Oman 99.9 -16.7% 96
Pakistan Pakistan 116 +22.7% 41
Panama Panama 80.6 -4.84% 167
Peru Peru 121 +5.31% 28
Philippines Philippines 94.2 +6.92% 128
Palau Palau 91.8 -3.06% 141
Papua New Guinea Papua New Guinea 130 -32.8% 14
Poland Poland 101 +4.56% 91
North Korea North Korea 138 -15.1% 9
Portugal Portugal 96.3 +3.1% 115
Paraguay Paraguay 92 -21.4% 139
Palestinian Territories Palestinian Territories 78.6 +9.32% 170
French Polynesia French Polynesia 89.3 0% 149
Qatar Qatar 137 -42.2% 10
Romania Romania 95.1 +0.316% 123
Russia Russia 115 -15.4% 45
Rwanda Rwanda 115 +1.05% 43
Saudi Arabia Saudi Arabia 168 -7.89% 3
Senegal Senegal 113 +1.62% 49
Singapore Singapore 93.3 -0.85% 131
Solomon Islands Solomon Islands 77 +0.391% 171
Sierra Leone Sierra Leone 104 -6.75% 76
El Salvador El Salvador 97 +5.9% 110
Somalia Somalia 117 +0.342% 34
Serbia Serbia 102 +6.83% 86
São Tomé & Príncipe São Tomé & Príncipe 107 +4.48% 64
Suriname Suriname 117 +5.79% 37
Slovakia Slovakia 96.8 +2.98% 112
Slovenia Slovenia 104 +7.63% 72
Sweden Sweden 96.9 -0.513% 111
Eswatini Eswatini 92.8 +13.3% 135
Seychelles Seychelles 94.5 +4.19% 126
Syria Syria 104 +1.76% 74
Turks & Caicos Islands Turks & Caicos Islands 57.1 -38.1% 178
Chad Chad 144 -9.21% 5
Togo Togo 108 +0.844% 62
Thailand Thailand 90 +0.559% 147
Tajikistan Tajikistan 105 -2.78% 70
Turkmenistan Turkmenistan 144 -45.8% 5
Timor-Leste Timor-Leste 121 -21.6% 28
Tonga Tonga 85.3 +5.31% 160
Trinidad & Tobago Trinidad & Tobago 131 -19.4% 13
Tunisia Tunisia 92.5 +4.52% 137
Turkey Turkey 86.7 +14.1% 156
Tanzania Tanzania 106 +7.64% 68
Uganda Uganda 104 +0.288% 72
Ukraine Ukraine 79.4 -20.1% 169
Uruguay Uruguay 103 +5.65% 81
United States United States 107 -2.29% 66
Uzbekistan Uzbekistan 123 -3.22% 25
St. Vincent & Grenadines St. Vincent & Grenadines 54.3 +6.89% 180
British Virgin Islands British Virgin Islands 63.9 +12.5% 176
Vietnam Vietnam 103 +2.99% 77
Vanuatu Vanuatu 93.2 +3.67% 132
Samoa Samoa 95 +0.742% 124
Yemen Yemen 106 -8.85% 67
South Africa South Africa 114 -3.64% 46
Zambia Zambia 117 -0.342% 39
Zimbabwe Zimbabwe 99.1 +5.43% 101

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TT.PRI.MRCH.XD.WD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TT.PRI.MRCH.XD.WD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))