Natural gas rents (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0 96
Afghanistan Afghanistan 0.00195 +45% 87
Angola Angola 1.01 +15.5% 27
Albania Albania 0.0495 +401% 64
United Arab Emirates United Arab Emirates 1.96 +32.7% 21
Argentina Argentina 0.389 +30.6% 38
Armenia Armenia 0 96
American Samoa American Samoa 0 96
Antigua & Barbuda Antigua & Barbuda 0 96
Australia Australia 1.72 +42.5% 23
Austria Austria 0.0241 +357% 70
Azerbaijan Azerbaijan 8.59 +439% 7
Burundi Burundi 0 96
Belgium Belgium 0.000137 +337% 93
Benin Benin 0 96
Burkina Faso Burkina Faso 0 96
Bangladesh Bangladesh 0.49 +7.23% 36
Bulgaria Bulgaria 0.0065 +163% 83
Bahrain Bahrain 5.7 +42.3% 11
Bahamas Bahamas 0 96
Bosnia & Herzegovina Bosnia & Herzegovina 0 96
Belarus Belarus 0.0394 +429% 66
Belize Belize 0.00165 +35.3% 88
Bermuda Bermuda 0 96
Bolivia Bolivia 1.85 +53.8% 22
Brazil Brazil 0.07 +46.5% 60
Barbados Barbados 0.00722 +23.1% 82
Brunei Brunei 13.9 +35.4% 2
Bhutan Bhutan 0 96
Botswana Botswana 0 96
Central African Republic Central African Republic 0 96
Canada Canada 0.794 30
Switzerland Switzerland 0 96
Chile Chile 0.0214 +48.9% 71
China China 0.211 +55.3% 49
Côte d’Ivoire Côte d’Ivoire 0.309 +74.3% 44
Cameroon Cameroon 0.585 +61.9% 33
Congo - Kinshasa Congo - Kinshasa 0 96
Congo - Brazzaville Congo - Brazzaville 0.357 +49.7% 41
Colombia Colombia 0.176 +40.8% 51
Comoros Comoros 0 96
Cape Verde Cape Verde 0 96
Costa Rica Costa Rica 0 96
Cayman Islands Cayman Islands 0 96
Cyprus Cyprus 0 96
Czechia Czechia 0.0121 +406% 75
Germany Germany 0.0177 +371% 72
Djibouti Djibouti 0 96
Dominica Dominica 0 96
Denmark Denmark 0.0551 +353% 61
Dominican Republic Dominican Republic 0 96
Algeria Algeria 8 +65.3% 8
Ecuador Ecuador 0.0136 +56.8% 73
Egypt Egypt 2.05 +60.8% 19
Spain Spain 0.000567 +399% 90
Estonia Estonia 0 96
Ethiopia Ethiopia 0 96
Finland Finland 0 96
Fiji Fiji 0 96
France France 0.000138 +544% 92
Faroe Islands Faroe Islands 0 96
Micronesia (Federated States of) Micronesia (Federated States of) 0 96
Gabon Gabon 0.269 +27.7% 46
United Kingdom United Kingdom 0.171 +301% 52
Georgia Georgia 0.00945 +4,040% 77
Ghana Ghana 0.371 +87.5% 39
Guinea Guinea 0 96
Gambia Gambia 0 96
Guinea-Bissau Guinea-Bissau 0 96
Equatorial Guinea Equatorial Guinea 6.63 +78.5% 9
Greece Greece 0.000385 +200% 91
Grenada Grenada 0 96
Guatemala Guatemala 0.00008 +46.4% 94
Guam Guam 0 96
Guyana Guyana 0 96
Hong Kong SAR China Hong Kong SAR China 0 96
Honduras Honduras 0 96
Croatia Croatia 0.183 +303% 50
Haiti Haiti 0 96
Hungary Hungary 0.131 +330% 55
Indonesia Indonesia 0.841 +53.8% 29
India India 0.0775 +14.8% 59
Ireland Ireland 0.0511 +263% 62
Iran Iran 8.81 +3.68% 6
Iraq Iraq 0.656 +73.3% 32
Iceland Iceland 0 96
Israel Israel 0.43 +62.4% 37
Italy Italy 0.025 +302% 69
Jamaica Jamaica 0 96
Jordan Jordan 0.043 +47.8% 65
Japan Japan 0.00881 +81.9% 79
Kazakhstan Kazakhstan 2.04 +366% 20
Kenya Kenya 0 96
Kyrgyzstan Kyrgyzstan 0.00208 +353% 86
Cambodia Cambodia 0 96
Kiribati Kiribati 0 96
St. Kitts & Nevis St. Kitts & Nevis 0 96
South Korea South Korea 0.0052 +19.6% 84
Laos Laos 0 96
Lebanon Lebanon 0 96
Liberia Liberia 0 96
Libya Libya 4.58 +111% 14
St. Lucia St. Lucia 0 96
Sri Lanka Sri Lanka 0 96
Lesotho Lesotho 0 96
Lithuania Lithuania 0 96
Luxembourg Luxembourg 0 96
Latvia Latvia 0 96
Macao SAR China Macao SAR China 0 96
Morocco Morocco 0.00921 +45.8% 78
Moldova Moldova 0.00006 +2,989% 95
Madagascar Madagascar 0 96
Maldives Maldives 0 96
Mexico Mexico 0.091 +29.8% 58
North Macedonia North Macedonia 0 96
Mali Mali 0 96
Malta Malta 0 96
Myanmar (Burma) Myanmar (Burma) 4.4 +103% 15
Montenegro Montenegro 0 96
Mongolia Mongolia 0 96
Mozambique Mozambique 3.57 +64.7% 17
Mauritania Mauritania 0 96
Mauritius Mauritius 0 96
Malawi Malawi 0 96
Malaysia Malaysia 3.35 +69.1% 18
Namibia Namibia 0 96
New Caledonia New Caledonia 0 96
Niger Niger 0.0303 +71.6% 67
Nigeria Nigeria 1.16 +73.9% 26
Nicaragua Nicaragua 0 96
Netherlands Netherlands 0.312 +354% 43
Norway Norway 3.94 +333% 16
Nepal Nepal 0 96
Nauru Nauru 0 96
New Zealand New Zealand 0.295 +27.6% 45
Oman Oman 5.67 +45.8% 12
Pakistan Pakistan 0.736 +2.98% 31
Panama Panama 0 96
Peru Peru 0.258 +44.2% 47
Philippines Philippines 0.156 +35.7% 54
Papua New Guinea Papua New Guinea 9.14 +53.4% 5
Poland Poland 0.1 +388% 56
Puerto Rico Puerto Rico 0 96
Portugal Portugal 0 96
Paraguay Paraguay 0 96
French Polynesia French Polynesia 0 96
Qatar Qatar 12 +24.7% 3
Romania Romania 0.531 +403% 34
Russia Russia 5.86 +423% 10
Rwanda Rwanda 0.051 +76% 63
Saudi Arabia Saudi Arabia 1.72 +34.3% 24
Sudan Sudan 0 96
Senegal Senegal 0.0026 -24.6% 85
Singapore Singapore 0 96
Solomon Islands Solomon Islands 0 96
El Salvador El Salvador 0 96
Somalia Somalia 0 96
Serbia Serbia 0.0971 +326% 57
São Tomé & Príncipe São Tomé & Príncipe 0 96
Suriname Suriname 0.0115 +67.5% 76
Slovakia Slovakia 0.00854 +360% 80
Slovenia Slovenia 0.00143 +363% 89
Sweden Sweden 0 96
Eswatini Eswatini 0 96
Seychelles Seychelles 0 96
Turks & Caicos Islands Turks & Caicos Islands 0 96
Chad Chad 0.0135 +267% 74
Togo Togo 0 96
Thailand Thailand 0.94 +72.7% 28
Tajikistan Tajikistan 0.171 +452% 53
Timor-Leste Timor-Leste 29.4 -6.71% 1
Tonga Tonga 0 96
Trinidad & Tobago Trinidad & Tobago 5.09 +16.2% 13
Tunisia Tunisia 0.491 +61.9% 35
Turkey Turkey 0.00748 +347% 81
Tuvalu Tuvalu 0 96
Tanzania Tanzania 0.223 +78.1% 48
Uganda Uganda 0 96
Ukraine Ukraine 1.36 +314% 25
Uruguay Uruguay 0 96
United States United States 0.363 40
Uzbekistan Uzbekistan 11 +434% 4
St. Vincent & Grenadines St. Vincent & Grenadines 0 96
Vietnam Vietnam 0.327 +32% 42
Vanuatu Vanuatu 0 96
Samoa Samoa 0 96
Kosovo Kosovo 0 96
South Africa South Africa 0.0294 +41.5% 68
Zambia Zambia 0 96
Zimbabwe Zimbabwe 0 96

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GDP.NGAS.RT.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GDP.NGAS.RT.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))