Mortality rate, under-5, male (per 1,000 live births)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 59.2 -3.11% 26
Angola Angola 69.1 -3.22% 19
Albania Albania 10.1 -0.98% 119
Andorra Andorra 2.9 -3.33% 156
United Arab Emirates United Arab Emirates 5.5 -5.17% 138
Argentina Argentina 10.5 -1.87% 117
Armenia Armenia 11 -4.35% 114
Antigua & Barbuda Antigua & Barbuda 10.1 -2.88% 119
Australia Australia 4 0% 147
Austria Austria 3.4 -2.86% 153
Azerbaijan Azerbaijan 19.6 -4.85% 84
Burundi Burundi 53.1 -3.1% 30
Belgium Belgium 4 -2.44% 147
Benin Benin 83.2 -3.03% 10
Burkina Faso Burkina Faso 81.6 -3.09% 11
Bangladesh Bangladesh 32.6 -0.306% 56
Bulgaria Bulgaria 6.6 -1.49% 131
Bahrain Bahrain 8.8 +2.33% 125
Bahamas Bahamas 13.6 -2.16% 104
Bosnia & Herzegovina Bosnia & Herzegovina 6.5 -4.41% 132
Belarus Belarus 2.7 -6.9% 158
Belize Belize 14 -0.709% 102
Bolivia Bolivia 25.3 -3.44% 69
Brazil Brazil 16 -1.23% 96
Barbados Barbados 10.8 -3.57% 116
Brunei Brunei 10.1 -0.98% 119
Bhutan Bhutan 25.1 -3.09% 70
Botswana Botswana 43.5 -2.9% 41
Central African Republic Central African Republic 97.9 -75.1% 8
Canada Canada 5.4 -1.82% 139
Switzerland Switzerland 4.3 0% 144
Chile Chile 7.7 +5.48% 126
China China 6.5 -5.8% 132
Côte d’Ivoire Côte d’Ivoire 74.1 -3.01% 16
Cameroon Cameroon 72.3 -3.21% 17
Congo - Kinshasa Congo - Kinshasa 78.5 -3.33% 13
Congo - Brazzaville Congo - Brazzaville 43.9 -3.52% 39
Colombia Colombia 13.3 -2.92% 106
Comoros Comoros 42.4 -2.97% 48
Cape Verde Cape Verde 12.6 -4.55% 108
Costa Rica Costa Rica 11.2 +3.7% 113
Cuba Cuba 9.1 +4.6% 123
Cyprus Cyprus 3.8 +2.7% 149
Czechia Czechia 2.8 -6.67% 157
Germany Germany 3.9 0% 148
Djibouti Djibouti 55.1 -2.99% 28
Dominica Dominica 37.7 +1.34% 52
Denmark Denmark 3.7 -2.63% 150
Dominican Republic Dominican Republic 34.1 -2.57% 55
Algeria Algeria 23.8 -1.65% 73
Ecuador Ecuador 14.7 -1.34% 100
Egypt Egypt 18.6 -3.63% 86
Eritrea Eritrea 39.6 -3.18% 51
Spain Spain 3.4 0% 153
Estonia Estonia 2.3 -4.17% 162
Ethiopia Ethiopia 52.3 -3.51% 31
Finland Finland 2.5 0% 160
Fiji Fiji 31.8 +0.952% 57
France France 4.7 +2.17% 143
Micronesia (Federated States of) Micronesia (Federated States of) 25.9 -3.36% 67
Gabon Gabon 36.8 -2.9% 54
United Kingdom United Kingdom 4.9 0% 141
Georgia Georgia 10.2 -0.971% 118
Ghana Ghana 41.1 -3.75% 50
Guinea Guinea 102 -2.77% 6
Gambia Gambia 48.7 -3.18% 34
Guinea-Bissau Guinea-Bissau 74.8 -3.36% 15
Equatorial Guinea Equatorial Guinea 76.2 -3.42% 14
Greece Greece 4 -2.44% 147
Grenada Grenada 19.7 -1.5% 83
Guatemala Guatemala 23.5 -3.29% 75
Guyana Guyana 28.9 -3.02% 62
Honduras Honduras 17.1 -3.39% 92
Croatia Croatia 5 -1.96% 140
Haiti Haiti 59.9 -2.92% 24
Hungary Hungary 4.2 -2.33% 145
Indonesia Indonesia 22.6 -3.42% 76
India India 27.7 -4.15% 64
Ireland Ireland 4.1 +2.5% 146
Iran Iran 12.4 -3.13% 109
Iraq Iraq 24.7 -3.52% 71
Iceland Iceland 2.8 0% 157
Israel Israel 3.6 -2.7% 151
Italy Italy 3 0% 155
Jamaica Jamaica 21.7 +0.463% 80
Jordan Jordan 14.4 -3.36% 101
Japan Japan 2.5 0% 160
Kazakhstan Kazakhstan 10.8 -1.82% 116
Kenya Kenya 44 -2.87% 38
Kyrgyzstan Kyrgyzstan 18.9 -1.56% 85
Cambodia Cambodia 25.4 -3.79% 68
Kiribati Kiribati 59.5 -2.3% 25
St. Kitts & Nevis St. Kitts & Nevis 17.9 -2.72% 89
South Korea South Korea 3 -3.23% 155
Kuwait Kuwait 9.5 -1.04% 122
Laos Laos 43.4 -3.34% 42
Lebanon Lebanon 19.6 +5.95% 84
Liberia Liberia 78.9 -3.07% 12
Libya Libya 31.7 +178% 58
St. Lucia St. Lucia 16.9 -1.74% 93
Sri Lanka Sri Lanka 6.7 -4.29% 130
Lesotho Lesotho 64.8 -4% 21
Lithuania Lithuania 3.7 0% 150
Luxembourg Luxembourg 2.5 -3.85% 160
Latvia Latvia 3.2 -8.57% 154
Morocco Morocco 18.2 -3.19% 87
Monaco Monaco 3 -3.23% 155
Moldova Moldova 16.3 0% 95
Madagascar Madagascar 69.8 -1.41% 18
Maldives Maldives 6.2 -4.62% 135
Mexico Mexico 13.6 -3.55% 104
Marshall Islands Marshall Islands 31.3 -3.1% 59
North Macedonia North Macedonia 3.4 -20.9% 153
Mali Mali 95.9 -3.03% 9
Malta Malta 5.9 -1.67% 136
Myanmar (Burma) Myanmar (Burma) 42.7 -3.39% 45
Montenegro Montenegro 2.7 -6.9% 158
Mongolia Mongolia 15 -2.6% 98
Mozambique Mozambique 65.8 -4.08% 20
Mauritania Mauritania 41.6 -3.03% 49
Mauritius Mauritius 16.8 -1.75% 94
Malawi Malawi 42.6 -3.84% 46
Malaysia Malaysia 8.8 0% 125
Namibia Namibia 44.6 -3.04% 37
Niger Niger 119 -1.9% 1
Nigeria Nigeria 110 -2.74% 2
Nicaragua Nicaragua 14.8 -3.9% 99
Netherlands Netherlands 4.3 -2.27% 144
Norway Norway 2.6 0% 159
Nepal Nepal 28.4 -3.73% 63
Nauru Nauru 9.8 -5.77% 121
New Zealand New Zealand 5 -3.85% 140
Oman Oman 11.3 -0.877% 112
Pakistan Pakistan 63 -3.08% 22
Panama Panama 14.4 -4% 101
Peru Peru 17.3 -2.26% 90
Philippines Philippines 29.6 -1.99% 61
Palau Palau 24.5 -2% 72
Papua New Guinea Papua New Guinea 43.5 -3.12% 41
Poland Poland 4.8 0% 142
North Korea North Korea 19.8 +1.54% 82
Portugal Portugal 3.5 0% 152
Paraguay Paraguay 18.6 -3.63% 86
Palestinian Territories Palestinian Territories 27.4 +77.9% 65
Qatar Qatar 6.4 -1.54% 133
Romania Romania 7.2 0% 128
Russia Russia 4.9 -5.77% 141
Rwanda Rwanda 43.7 -1.8% 40
Saudi Arabia Saudi Arabia 6.3 -3.08% 134
Sudan Sudan 55.2 -2.82% 27
Senegal Senegal 42.7 -4.69% 45
Singapore Singapore 2.2 -4.35% 163
Solomon Islands Solomon Islands 22.2 -3.06% 78
Sierra Leone Sierra Leone 100 -3.47% 7
El Salvador El Salvador 11.4 -3.39% 111
San Marino San Marino 1.5 -6.25% 164
Somalia Somalia 110 -26.3% 3
Serbia Serbia 5.8 0% 137
South Sudan South Sudan 104 -0.382% 5
São Tomé & Príncipe São Tomé & Príncipe 15.3 -4.38% 97
Suriname Suriname 18.1 -3.21% 88
Slovakia Slovakia 6.7 +1.52% 130
Slovenia Slovenia 2.4 -4% 161
Sweden Sweden 2.7 0% 158
Eswatini Eswatini 49.5 -2.56% 32
Seychelles Seychelles 15.3 -1.92% 97
Syria Syria 22.5 -2.6% 77
Turks & Caicos Islands Turks & Caicos Islands 6.2 -3.13% 135
Chad Chad 107 -3.07% 4
Togo Togo 62.6 -3.25% 23
Thailand Thailand 10.1 -2.88% 119
Tajikistan Tajikistan 30.6 -1.29% 60
Turkmenistan Turkmenistan 44.9 -2.6% 36
Timor-Leste Timor-Leste 54 -2.7% 29
Tonga Tonga 10.9 -2.68% 115
Trinidad & Tobago Trinidad & Tobago 20.8 -2.35% 81
Tunisia Tunisia 13.7 -6.8% 103
Turkey Turkey 13.5 +31.1% 105
Tuvalu Tuvalu 22.1 -3.07% 79
Tanzania Tanzania 42.5 -3.85% 47
Uganda Uganda 42.9 -4.03% 43
Ukraine Ukraine 8.9 -4.3% 124
Uruguay Uruguay 7.4 -1.33% 127
United States United States 7 0% 129
Uzbekistan Uzbekistan 15 -3.85% 98
St. Vincent & Grenadines St. Vincent & Grenadines 11.6 -4.13% 110
Venezuela Venezuela 26.2 0% 66
British Virgin Islands British Virgin Islands 12.8 -3.03% 107
Vietnam Vietnam 23.6 -2.07% 74
Vanuatu Vanuatu 17.9 -2.19% 89
Samoa Samoa 17.2 -2.82% 91
Kosovo Kosovo 9.9 -4.81% 120
Yemen Yemen 42.8 -3.82% 44
South Africa South Africa 37.2 +0.541% 53
Zambia Zambia 48.6 -4.33% 35
Zimbabwe Zimbabwe 48.9 -3.55% 33

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DYN.MORT.MA'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DYN.MORT.MA'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))