Military expenditure (% of general government expenditure)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Angola Angola 5.53 -5.36% 63
Albania Albania 5.62 +41.5% 61
Argentina Argentina 1.25 -32% 143
Armenia Armenia 20 +29% 6
Australia Australia 5.06 +0.93% 67
Austria Austria 1.63 +12.2% 137
Azerbaijan Azerbaijan 14.7 +1.44% 13
Burundi Burundi 10.2 +52.6% 26
Belgium Belgium 2.22 -0.452% 128
Benin Benin 3.75 +18% 102
Burkina Faso Burkina Faso 15.1 +64% 12
Bangladesh Bangladesh 8.04 -0.535% 38
Bulgaria Bulgaria 5.02 +18.8% 69
Bahrain Bahrain 10.8 +0.882% 24
Bosnia & Herzegovina Bosnia & Herzegovina 1.93 +10.3% 133
Belarus Belarus 50.6 +10.8% 2
Belize Belize 3.58 -0.135% 104
Bolivia Bolivia 4.2 +53.2% 84
Brazil Brazil 2.24 -3.02% 127
Brunei Brunei 10.2 +2.91% 28
Botswana Botswana 7.83 -3.31% 39
Central African Republic Central African Republic 12.7 +31.2% 20
Canada Canada 3.12 +8.23% 113
Switzerland Switzerland 2.2 +0.591% 130
Chile Chile 6.06 +4.8% 55
China China 4.97 +1.91% 70
Côte d’Ivoire Côte d’Ivoire 3.97 +1.35% 95
Cameroon Cameroon 5.63 +2.3% 60
Congo - Kinshasa Congo - Kinshasa 6.96 +114% 47
Congo - Brazzaville Congo - Brazzaville 8.89 +6.46% 33
Colombia Colombia 8.31 +0.66% 35
Cape Verde Cape Verde 1.74 +1.75% 135
Cyprus Cyprus 4.62 -1.97% 78
Czechia Czechia 3.3 +6.92% 110
Germany Germany 3.08 +10.7% 114
Denmark Denmark 4.1 +34.9% 90
Dominican Republic Dominican Republic 3.92 +8.49% 98
Algeria Algeria 19.3 +52.6% 8
Ecuador Ecuador 6.06 +6.08% 54
Egypt Egypt 4.15 -9.91% 87
Spain Spain 3.21 +5.34% 112
Estonia Estonia 6.77 +24.2% 49
Ethiopia Ethiopia 7.54 +10% 41
Finland Finland 4.44 +49.7% 80
Fiji Fiji 4.77 +9.43% 73
France France 3.57 +7.63% 105
Gabon Gabon 7.27 -10.5% 44
United Kingdom United Kingdom 5.15 +9.41% 66
Georgia Georgia 5.54 +11.4% 62
Ghana Ghana 1.92 +53.3% 134
Guinea Guinea 13.8 -12.5% 18
Gambia Gambia 2.64 -14.7% 123
Guinea-Bissau Guinea-Bissau 6.41 -5.3% 53
Equatorial Guinea Equatorial Guinea 7.53 -2.75% 42
Greece Greece 6.57 -13.8% 51
Guatemala Guatemala 2.98 -7.84% 117
Guyana Guyana 2.33 -21.4% 126
Honduras Honduras 5.86 -3.88% 57
Croatia Croatia 3.9 -3.4% 99
Haiti Haiti 0.674 -18.7% 145
Hungary Hungary 4.41 +15.9% 82
Indonesia Indonesia 3.92 -10.5% 97
India India 8.15 +1.14% 36
Ireland Ireland 1.02 -1.33% 144
Iran Iran 13.5 -12.6% 19
Iraq Iraq 4.15 -11% 86
Israel Israel 14.6 +19.8% 14
Italy Italy 3.04 -0.0412% 116
Jamaica Jamaica 4.06 -1.68% 92
Jordan Jordan 14.5 +0.0862% 15
Japan Japan 2.82 +12.6% 120
Kazakhstan Kazakhstan 2.1 -12% 131
Kenya Kenya 4.11 -7.13% 88
Kyrgyzstan Kyrgyzstan 10.5 +26.4% 25
Cambodia Cambodia 7.71 -8.44% 40
South Korea South Korea 11.1 +15% 23
Kuwait Kuwait 9.45 -15.8% 31
Liberia Liberia 3.51 +1.98% 106
Sri Lanka Sri Lanka 7.02 -3.15% 46
Lesotho Lesotho 2.73 -1.23% 122
Lithuania Lithuania 6.93 +2.17% 48
Luxembourg Luxembourg 1.62 +13.2% 138
Latvia Latvia 5.63 +8.79% 58
Morocco Morocco 11.1 -6.03% 22
Moldova Moldova 1.4 +56.3% 140
Madagascar Madagascar 3.45 -8.35% 107
Mexico Mexico 2.37 -1.49% 124
North Macedonia North Macedonia 4.7 +1.56% 75
Mali Mali 14.2 +14.5% 17
Malta Malta 1.38 +27.6% 142
Myanmar (Burma) Myanmar (Burma) 20.7 -6.88% 4
Montenegro Montenegro 3.74 +0.429% 103
Mongolia Mongolia 1.73 +11.5% 136
Mozambique Mozambique 5.63 +23.6% 59
Mauritania Mauritania 9.61 +16.9% 29
Mauritius Mauritius 0.524 +10.3% 146
Malawi Malawi 3.96 +13.2% 96
Malaysia Malaysia 4.11 +15.6% 89
Namibia Namibia 7.48 -6.36% 43
Niger Niger 10.2 +40.3% 27
Nigeria Nigeria 5.52 +22.3% 64
Nicaragua Nicaragua 2.02 +6.76% 132
Netherlands Netherlands 3.39 +8.99% 109
Norway Norway 4 +2.73% 94
Nepal Nepal 4.08 +0.789% 91
New Zealand New Zealand 2.91 +5.66% 118
Oman Oman 20.7 +21.6% 5
Pakistan Pakistan 14.5 -9.3% 16
Peru Peru 4.92 +0.807% 71
Philippines Philippines 5.02 -1.19% 68
Papua New Guinea Papua New Guinea 1.42 +0.631% 139
Poland Poland 8.12 +59.2% 37
Portugal Portugal 3.44 +8.7% 108
Paraguay Paraguay 3.79 +2.3% 100
Romania Romania 4.37 -6.75% 83
Russia Russia 16.1 +24.7% 10
Rwanda Rwanda 4.55 +1.34% 79
Saudi Arabia Saudi Arabia 24 +6.05% 3
Senegal Senegal 5.5 -3.82% 65
Singapore Singapore 18 +15.7% 9
Sierra Leone Sierra Leone 2.35 +0.573% 125
El Salvador El Salvador 4.66 -6.94% 77
Somalia Somalia 19.8 +25.3% 7
Serbia Serbia 6.42 +3.02% 52
South Sudan South Sudan 8.64 +49% 34
Slovakia Slovakia 4.19 -2.08% 85
Slovenia Slovenia 2.83 +3.01% 119
Sweden Sweden 3.06 +10.9% 115
Eswatini Eswatini 4.72 -12.9% 74
Seychelles Seychelles 4.43 +17.9% 81
Chad Chad 15.3 +5.11% 11
Togo Togo 12.7 -20.2% 21
Thailand Thailand 4.92 -1.87% 72
Tajikistan Tajikistan 3.78 -45.3% 101
Timor-Leste Timor-Leste 3.21 +40.7% 111
Trinidad & Tobago Trinidad & Tobago 2.82 +1.23% 121
Tunisia Tunisia 7.05 -0.00431% 45
Tanzania Tanzania 6.03 +1.69% 56
Uganda Uganda 9.58 -0.823% 30
Ukraine Ukraine 58.2 +48.3% 1
Uruguay Uruguay 6.72 +9.57% 50
United States United States 9.06 -2.87% 32
Kosovo Kosovo 4.02 +0.842% 93
South Africa South Africa 2.21 -6.52% 129
Zambia Zambia 4.69 +18.5% 76
Zimbabwe Zimbabwe 1.38 -71.8% 141

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'MS.MIL.XPND.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'MS.MIL.XPND.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))