Methane (CH4) emissions (total) excluding LULUCF (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0233 +0.866% 192
Afghanistan Afghanistan 16.5 +2.04% 80
Angola Angola 34 -1.29% 49
Albania Albania 2.1 -5.06% 147
United Arab Emirates United Arab Emirates 37.3 -1.08% 46
Argentina Argentina 127 -0.889% 15
Armenia Armenia 2.3 +0.414% 145
American Samoa American Samoa 0.0068 0% 198
Antigua & Barbuda Antigua & Barbuda 0.0562 -0.707% 182
Australia Australia 139 +2.37% 12
Austria Austria 9.44 +0.639% 103
Azerbaijan Azerbaijan 16 +0.402% 82
Burundi Burundi 4.87 +0.431% 127
Belgium Belgium 12.4 -0.25% 91
Benin Benin 7.49 +1.93% 113
Burkina Faso Burkina Faso 20.8 +1.95% 71
Bangladesh Bangladesh 128 +1.29% 14
Bulgaria Bulgaria 8.95 -6.12% 105
Bahrain Bahrain 24.1 -0.189% 64
Bahamas Bahamas 0.342 +1.06% 166
Bosnia & Herzegovina Bosnia & Herzegovina 5.6 -1.98% 123
Belarus Belarus 21 +0.481% 70
Belize Belize 0.533 +0.986% 164
Bermuda Bermuda 0.0218 -0.457% 193
Bolivia Bolivia 24.6 +1.37% 63
Brazil Brazil 647 -0.0732% 4
Barbados Barbados 0.165 +0.122% 171
Brunei Brunei 1.71 -2.46% 149
Bhutan Bhutan 1.1 -1.99% 155
Botswana Botswana 3.39 +0.384% 135
Central African Republic Central African Republic 7.65 +1.48% 112
Canada Canada 124 +1.34% 16
Switzerland Switzerland 5.88 +1.29% 120
Chile Chile 20.3 +0.454% 73
China China 1,814 +1.35% 1
Côte d’Ivoire Côte d’Ivoire 12.6 +1.15% 89
Cameroon Cameroon 20.8 -1.21% 72
Congo - Kinshasa Congo - Kinshasa 44.8 +1.55% 43
Congo - Brazzaville Congo - Brazzaville 15.5 +3.13% 83
Colombia Colombia 95.6 +1.14% 21
Comoros Comoros 0.399 +0.963% 165
Cape Verde Cape Verde 0.16 +1.33% 172
Costa Rica Costa Rica 5.78 +0.243% 122
Cuba Cuba 12.3 -0.387% 92
Cayman Islands Cayman Islands 0.0254 +1.2% 191
Cyprus Cyprus 2.56 +10.8% 141
Czechia Czechia 14.4 -1.29% 85
Germany Germany 59.6 -2.41% 32
Djibouti Djibouti 1.21 +0.884% 154
Dominica Dominica 0.0577 +0.348% 181
Denmark Denmark 10.5 +1.13% 97
Dominican Republic Dominican Republic 12.6 +0.887% 90
Algeria Algeria 68.5 -0.423% 28
Ecuador Ecuador 23.3 -1.02% 65
Egypt Egypt 51.4 -0.742% 36
Eritrea Eritrea 4.51 +0.591% 130
Spain Spain 46.4 -0.46% 41
Estonia Estonia 1.92 -1.35% 148
Ethiopia Ethiopia 115 +1.97% 18
Finland Finland 5.93 -9.38% 119
Fiji Fiji 0.815 +0.655% 160
France France 65.9 -1.24% 29
Faroe Islands Faroe Islands 0.0424 +0.236% 187
Micronesia (Federated States of) Micronesia (Federated States of) 0.0371 +0.815% 188
Gabon Gabon 14.9 +15.8% 84
United Kingdom United Kingdom 46.6 -1.42% 40
Georgia Georgia 4.22 +0.575% 131
Ghana Ghana 18.7 +3.11% 77
Gibraltar Gibraltar 0.0159 +1.27% 195
Guinea Guinea 20 +3.1% 74
Gambia Gambia 1.09 -0.538% 157
Guinea-Bissau Guinea-Bissau 2.16 +0.79% 146
Equatorial Guinea Equatorial Guinea 2.95 -21.9% 139
Greece Greece 10.3 -2.77% 98
Grenada Grenada 0.0485 +1.04% 186
Greenland Greenland 0.0614 0% 179
Guatemala Guatemala 18.1 +1.04% 78
Guam Guam 0.0121 +0.833% 196
Guyana Guyana 3.45 -3.53% 134
Hong Kong SAR China Hong Kong SAR China 5.12 +1.14% 125
Honduras Honduras 9.12 +1.02% 104
Croatia Croatia 3.51 -2.6% 133
Haiti Haiti 8.79 +0.00569% 107
Hungary Hungary 10.2 +0.714% 99
Indonesia Indonesia 433 +6.59% 6
India India 849 +1.41% 3
Ireland Ireland 17.6 -1.09% 79
Iran Iran 170 +10.6% 9
Iraq Iraq 161 -3.2% 11
Iceland Iceland 0.554 -3.12% 163
Israel Israel 9.96 +1.71% 101
Italy Italy 40.5 -2.13% 44
Jamaica Jamaica 0.842 -0.0949% 159
Jordan Jordan 5.94 +2.06% 118
Japan Japan 57.6 -2.05% 33
Kazakhstan Kazakhstan 61.8 -0.381% 31
Kenya Kenya 69 +4.04% 27
Kyrgyzstan Kyrgyzstan 9.45 +1.12% 102
Cambodia Cambodia 27.2 +2.11% 57
Kiribati Kiribati 0.0272 +1.49% 190
St. Kitts & Nevis St. Kitts & Nevis 0.0503 +5.01% 184
South Korea South Korea 45.9 -1.86% 42
Kuwait Kuwait 39.5 -2.01% 45
Laos Laos 12.9 +1.45% 88
Lebanon Lebanon 4.06 +1.42% 132
Liberia Liberia 2.52 +0.326% 142
Libya Libya 28.4 +9.13% 56
St. Lucia St. Lucia 0.0606 +0.498% 180
Sri Lanka Sri Lanka 16.1 +1.17% 81
Lesotho Lesotho 1.34 -3.99% 153
Lithuania Lithuania 3.1 -1.95% 138
Luxembourg Luxembourg 0.583 -0.647% 161
Latvia Latvia 2.4 -0.0167% 144
Macao SAR China Macao SAR China 0.0528 +1.34% 183
Morocco Morocco 30.5 +1.57% 52
Moldova Moldova 2.42 +1.3% 143
Madagascar Madagascar 23.1 -0.832% 66
Maldives Maldives 0.166 +3.05% 170
Mexico Mexico 170 +1.22% 10
Marshall Islands Marshall Islands 0.0026 0% 201
North Macedonia North Macedonia 1.49 -2.35% 151
Mali Mali 28.7 +2.16% 54
Malta Malta 0.158 -0.189% 173
Myanmar (Burma) Myanmar (Burma) 69.5 -4.89% 26
Mongolia Mongolia 47.2 +43.6% 39
Northern Mariana Islands Northern Mariana Islands 0.0028 0% 200
Mozambique Mozambique 19.5 +1.69% 75
Mauritania Mauritania 8.83 +1.48% 106
Mauritius Mauritius 0.576 +0.261% 162
Malawi Malawi 8.78 +4.08% 108
Malaysia Malaysia 30.3 +1.54% 53
Namibia Namibia 6.24 -0.318% 115
New Caledonia New Caledonia 0.207 +0.194% 169
Niger Niger 28.5 +3.83% 55
Nigeria Nigeria 210 +2.66% 8
Nicaragua Nicaragua 11.1 +0.2% 95
Netherlands Netherlands 19.3 -1.44% 76
Norway Norway 8.37 +0.348% 110
Nepal Nepal 33 +0.376% 50
Nauru Nauru 0.0009 0% 202
New Zealand New Zealand 36.8 -1.03% 47
Oman Oman 32.2 -0.0556% 51
Pakistan Pakistan 263 +5.16% 7
Panama Panama 4.75 +0.559% 128
Peru Peru 27 +0.742% 58
Philippines Philippines 73.3 +0.104% 24
Palau Palau 0.034 -7.36% 189
Papua New Guinea Papua New Guinea 3.16 -0.764% 137
Poland Poland 48.7 -3.44% 38
Puerto Rico Puerto Rico 1.64 -0.52% 150
North Korea North Korea 21.2 -2.72% 69
Portugal Portugal 10.7 +1.62% 96
Paraguay Paraguay 26.4 -0.359% 60
French Polynesia French Polynesia 0.0813 +0.743% 176
Qatar Qatar 22.7 +2.32% 67
Romania Romania 22.3 -0.134% 68
Russia Russia 479 +0.603% 5
Rwanda Rwanda 4.68 +0.326% 129
Saudi Arabia Saudi Arabia 115 -3.19% 19
Sudan Sudan 87 +0.81% 23
Senegal Senegal 12 +1.99% 93
Singapore Singapore 5.82 +8.5% 121
Solomon Islands Solomon Islands 0.282 +1.99% 168
Sierra Leone Sierra Leone 5.1 +0.716% 126
El Salvador El Salvador 3.28 +0.912% 136
Somalia Somalia 25.4 +0.159% 62
São Tomé & Príncipe São Tomé & Príncipe 0.0716 +1.42% 178
Suriname Suriname 0.964 -1.37% 158
Slovakia Slovakia 6.15 -1.08% 116
Slovenia Slovenia 2.91 -2.65% 140
Sweden Sweden 8.24 -0.165% 111
Eswatini Eswatini 1.42 +0.34% 152
Seychelles Seychelles 0.0746 +1.77% 177
Syria Syria 6.95 +1.69% 114
Turks & Caicos Islands Turks & Caicos Islands 0.0051 -8.93% 199
Chad Chad 71.1 +4.85% 25
Togo Togo 6.14 +1.72% 117
Thailand Thailand 113 -2.01% 20
Tajikistan Tajikistan 10.1 +1.19% 100
Turkmenistan Turkmenistan 26.8 -1.42% 59
Timor-Leste Timor-Leste 1.09 0% 156
Tonga Tonga 0.0993 +0.303% 175
Trinidad & Tobago Trinidad & Tobago 5.28 -0.571% 124
Tunisia Tunisia 8.58 -0.0291% 109
Turkey Turkey 130 +1.56% 13
Tuvalu Tuvalu 0.0026 0% 201
Tanzania Tanzania 53.4 +2.99% 35
Uganda Uganda 36.7 +0.655% 48
Ukraine Ukraine 56.5 +1.23% 34
Uruguay Uruguay 26 -2.52% 61
United States United States 861 +1.79% 2
Uzbekistan Uzbekistan 63.2 -1.1% 30
St. Vincent & Grenadines St. Vincent & Grenadines 0.0487 +0.412% 185
Venezuela Venezuela 51 +2.3% 37
British Virgin Islands British Virgin Islands 0.0119 +0.847% 197
U.S. Virgin Islands U.S. Virgin Islands 0.0196 0% 194
Vietnam Vietnam 116 +0.351% 17
Vanuatu Vanuatu 0.311 +0.647% 167
Samoa Samoa 0.138 -3.08% 174
Yemen Yemen 11.6 -8.96% 94
South Africa South Africa 90.3 -0.088% 22
Zambia Zambia 13.9 +2% 87
Zimbabwe Zimbabwe 14.2 +2.4% 86

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CH4.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CH4.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))