Methane (CH4) emissions from Waste (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0179 +0.562% 191
Afghanistan Afghanistan 2.05 +2.36% 97
Angola Angola 3.46 +3.1% 74
Albania Albania 0.58 +1.83% 136
United Arab Emirates United Arab Emirates 7.67 +1.65% 44
Argentina Argentina 10.8 +0.407% 35
Armenia Armenia 0.499 +0.972% 143
American Samoa American Samoa 0.0028 0% 198
Antigua & Barbuda Antigua & Barbuda 0.0452 +1.12% 177
Australia Australia 12.6 -0.243% 28
Austria Austria 2.56 +1.71% 86
Azerbaijan Azerbaijan 3.17 +0.938% 80
Burundi Burundi 1.03 +2.99% 120
Belgium Belgium 2.44 -2.51% 92
Benin Benin 1.39 +2.64% 110
Burkina Faso Burkina Faso 2.45 +3.27% 90
Bangladesh Bangladesh 16.3 +3.85% 22
Bulgaria Bulgaria 5.65 -3.19% 50
Bahrain Bahrain 1.07 +2.41% 119
Bahamas Bahamas 0.319 +1.08% 152
Bosnia & Herzegovina Bosnia & Herzegovina 0.995 +1.06% 122
Belarus Belarus 6.17 +0.715% 48
Belize Belize 0.293 +2.12% 154
Bermuda Bermuda 0.0187 -1.06% 190
Bolivia Bolivia 0.833 +2.03% 126
Brazil Brazil 134 +0.463% 4
Barbados Barbados 0.124 +0.161% 166
Brunei Brunei 0.112 +1.44% 167
Bhutan Bhutan 0.159 +2.85% 164
Botswana Botswana 0.487 +2.59% 144
Central African Republic Central African Republic 0.422 +2.75% 148
Canada Canada 22.7 +1.93% 14
Switzerland Switzerland 0.245 -0.122% 159
Chile Chile 11.6 +0.357% 30
China China 382 +3.47% 1
Côte d’Ivoire Côte d’Ivoire 2.72 +3.13% 84
Cameroon Cameroon 3.42 +3.17% 75
Congo - Kinshasa Congo - Kinshasa 12.7 +3.66% 27
Congo - Brazzaville Congo - Brazzaville 0.774 +2.33% 130
Colombia Colombia 22.8 +2.26% 13
Comoros Comoros 0.161 +2.35% 163
Cape Verde Cape Verde 0.0646 +1.89% 172
Costa Rica Costa Rica 2.29 +2.07% 94
Cuba Cuba 4.75 +0.593% 57
Cayman Islands Cayman Islands 0.0202 +1.51% 189
Cyprus Cyprus 2.06 +13% 96
Czechia Czechia 5.88 +0.953% 49
Germany Germany 10.9 -6.29% 34
Djibouti Djibouti 0.52 +2.28% 140
Dominica Dominica 0.0277 +0.362% 185
Denmark Denmark 3.13 +3.37% 81
Dominican Republic Dominican Republic 4.51 +2.7% 61
Algeria Algeria 20.8 +0.866% 18
Ecuador Ecuador 4.73 +1.39% 58
Egypt Egypt 16.4 +4.04% 21
Eritrea Eritrea 0.697 +1.95% 133
Spain Spain 15.8 -0.438% 23
Estonia Estonia 0.789 -3.32% 129
Ethiopia Ethiopia 13.2 +2.68% 26
Finland Finland 2.56 -19.3% 87
Fiji Fiji 0.467 +1.87% 145
France France 16.6 -4.35% 20
Faroe Islands Faroe Islands 0.0217 0% 188
Micronesia (Federated States of) Micronesia (Federated States of) 0.0051 +2% 194
Gabon Gabon 0.272 +2.1% 156
United Kingdom United Kingdom 9.64 -1.17% 39
Georgia Georgia 1.75 +1.11% 101
Ghana Ghana 2.5 +1.69% 89
Gibraltar Gibraltar 0.0152 +1.33% 192
Guinea Guinea 2.41 +3.37% 93
Gambia Gambia 0.294 +3.02% 153
Guinea-Bissau Guinea-Bissau 0.343 +2.79% 150
Equatorial Guinea Equatorial Guinea 0.36 -5.93% 149
Greece Greece 4.16 -2.99% 65
Grenada Grenada 0.0377 +1.34% 180
Greenland Greenland 0.0556 -0.18% 174
Guatemala Guatemala 7.56 +2.46% 45
Guam Guam 0.0091 0% 193
Guyana Guyana 0.465 +1.02% 146
Hong Kong SAR China Hong Kong SAR China 4.99 +1.03% 53
Honduras Honduras 3.41 +2.69% 76
Croatia Croatia 1.25 -4.63% 112
Haiti Haiti 1.16 +1.27% 114
Hungary Hungary 3.99 +2.56% 68
Indonesia Indonesia 52 +0.908% 8
India India 134 +2.03% 5
Ireland Ireland 0.588 -13.6% 135
Iran Iran 15.1 +1.46% 24
Iraq Iraq 12.3 +2.63% 29
Iceland Iceland 0.269 -4% 157
Israel Israel 7.2 +1.77% 46
Italy Italy 11.3 -6.45% 31
Jamaica Jamaica 0.284 +0.106% 155
Jordan Jordan 4.96 +2.42% 54
Japan Japan 6.94 -2.99% 47
Kazakhstan Kazakhstan 4.73 -0.177% 59
Kenya Kenya 3.12 +3.2% 82
Kyrgyzstan Kyrgyzstan 2.53 +0.956% 88
Cambodia Cambodia 1.4 +2.74% 109
Kiribati Kiribati 0.0222 +2.3% 187
St. Kitts & Nevis St. Kitts & Nevis 0.032 +0.946% 183
South Korea South Korea 21 -1.65% 16
Kuwait Kuwait 10.7 +2.02% 36
Laos Laos 0.508 +2.23% 142
Lebanon Lebanon 3.57 +1.56% 72
Liberia Liberia 0.542 +2.36% 138
Libya Libya 3.02 +1.9% 83
St. Lucia St. Lucia 0.0334 +0.602% 182
Sri Lanka Sri Lanka 4.76 +1.31% 56
Lesotho Lesotho 0.18 +1.98% 161
Lithuania Lithuania 0.52 -10.3% 141
Luxembourg Luxembourg 0.0482 -7.31% 176
Latvia Latvia 0.825 -0.794% 127
Macao SAR China Macao SAR China 0.0402 +1.01% 178
Morocco Morocco 20.9 +2.2% 17
Moldova Moldova 1.1 +1.36% 116
Madagascar Madagascar 2.44 +3.6% 91
Maldives Maldives 0.15 +3.16% 165
Mexico Mexico 66.7 +1.69% 7
Marshall Islands Marshall Islands 0.0026 0% 200
North Macedonia North Macedonia 0.701 +2.44% 132
Mali Mali 1.44 +3.58% 107
Malta Malta 0.105 +0.0956% 168
Myanmar (Burma) Myanmar (Burma) 3.69 +1.12% 70
Mongolia Mongolia 0.57 +2.57% 137
Northern Mariana Islands Northern Mariana Islands 0.0028 0% 198
Mozambique Mozambique 1.94 +3.48% 98
Mauritania Mauritania 0.848 +2.74% 125
Mauritius Mauritius 0.536 +0.393% 139
Malawi Malawi 1.25 +3.32% 113
Malaysia Malaysia 13.6 +2.36% 25
Namibia Namibia 0.341 +2.4% 151
New Caledonia New Caledonia 0.0581 +1.57% 173
Niger Niger 1.25 +3.64% 111
Nigeria Nigeria 31.9 +2.8% 10
Nicaragua Nicaragua 1.43 +1.44% 108
Netherlands Netherlands 4.79 -3% 55
Norway Norway 0.819 +0.912% 128
Nepal Nepal 2.16 +1.03% 95
Nauru Nauru 0.0006 0% 202
New Zealand New Zealand 5.04 +0.101% 52
Oman Oman 4.05 +4.41% 66
Pakistan Pakistan 24.6 +1.66% 12
Panama Panama 1.56 +2.17% 105
Peru Peru 8.15 +1.71% 42
Philippines Philippines 11 +2.15% 32
Palau Palau 0.0045 0% 195
Papua New Guinea Papua New Guinea 0.882 +1.88% 124
Poland Poland 9.8 +0.0868% 37
Puerto Rico Puerto Rico 1.14 -0.67% 115
North Korea North Korea 4.56 +0.681% 60
Portugal Portugal 4.26 +2.27% 64
Paraguay Paraguay 0.629 +1.85% 134
French Polynesia French Polynesia 0.0502 +0.803% 175
Qatar Qatar 3.55 +5.93% 73
Romania Romania 9.6 +1.54% 40
Russia Russia 143 +3.67% 3
Rwanda Rwanda 1.09 +2.63% 118
Saudi Arabia Saudi Arabia 33.3 +2.17% 9
Sudan Sudan 9.73 +2.38% 38
Senegal Senegal 1.89 +2.76% 99
Singapore Singapore 5.2 +9.66% 51
Solomon Islands Solomon Islands 0.208 +2.66% 160
Sierra Leone Sierra Leone 0.745 +2.01% 131
El Salvador El Salvador 1.56 +1.72% 104
Somalia Somalia 2.65 +2.92% 85
São Tomé & Príncipe São Tomé & Príncipe 0.0271 +3.04% 186
Suriname Suriname 0.246 +0.615% 158
Slovakia Slovakia 3.58 -1.42% 71
Slovenia Slovenia 0.432 -1.77% 147
Sweden Sweden 3.37 +0.0534% 78
Eswatini Eswatini 0.164 +1.61% 162
Seychelles Seychelles 0.0666 +1.68% 171
Syria Syria 1.09 +1.39% 117
Turks & Caicos Islands Turks & Caicos Islands 0.0034 -10.5% 197
Chad Chad 1.88 +2.64% 100
Togo Togo 0.948 +2.81% 123
Thailand Thailand 27.2 +1.88% 11
Tajikistan Tajikistan 1.46 +2.64% 106
Turkmenistan Turkmenistan 1.65 +2.79% 102
Timor-Leste Timor-Leste 0.102 +1.99% 169
Tonga Tonga 0.0385 +0.522% 179
Trinidad & Tobago Trinidad & Tobago 3.77 +0.112% 69
Tunisia Tunisia 3.36 +1.48% 79
Turkey Turkey 72 +3.58% 6
Tuvalu Tuvalu 0.0009 0% 201
Tanzania Tanzania 3.41 +3.57% 77
Uganda Uganda 4.04 +3.08% 67
Ukraine Ukraine 11 +3.1% 33
Uruguay Uruguay 4.44 +0.124% 62
United States United States 147 +0.459% 2
Uzbekistan Uzbekistan 8.23 +1.76% 41
St. Vincent & Grenadines St. Vincent & Grenadines 0.0374 +1.08% 181
Venezuela Venezuela 8.03 -2.32% 43
British Virgin Islands British Virgin Islands 0.004 0% 196
U.S. Virgin Islands U.S. Virgin Islands 0.0027 0% 199
Vietnam Vietnam 17 +3.61% 19
Vanuatu Vanuatu 0.0922 +2.22% 170
Samoa Samoa 0.0316 +0.637% 184
Yemen Yemen 4.4 +1.19% 63
South Africa South Africa 22.5 +1.63% 15
Zambia Zambia 1.02 +3.2% 121
Zimbabwe Zimbabwe 1.62 +1.95% 103

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CH4.WA.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CH4.WA.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))