Methane (CH4) emissions from Transport (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0008 0% 154
Afghanistan Afghanistan 0.0141 +2.17% 101
Angola Angola 0.0535 +4.49% 53
Albania Albania 0.0043 0% 135
United Arab Emirates United Arab Emirates 0.141 +2.77% 32
Argentina Argentina 0.244 -4.2% 20
Armenia Armenia 0.0206 +5.64% 88
Antigua & Barbuda Antigua & Barbuda 0.0005 0% 156
Australia Australia 0.191 +5.41% 26
Austria Austria 0.0218 -3.54% 84
Azerbaijan Azerbaijan 0.0396 +3.13% 63
Burundi Burundi 0.0026 0% 144
Belgium Belgium 0.0352 -6.38% 68
Benin Benin 0.0372 -3.13% 65
Burkina Faso Burkina Faso 0.0174 -3.33% 96
Bangladesh Bangladesh 0.135 -6.18% 34
Bulgaria Bulgaria 0.0447 -2.4% 57
Bahrain Bahrain 0.0118 0% 106
Bahamas Bahamas 0.0026 +8.33% 144
Bosnia & Herzegovina Bosnia & Herzegovina 0.0139 +1.46% 102
Belarus Belarus 0.037 +1.09% 66
Belize Belize 0.0004 0% 157
Bermuda Bermuda 0.0005 0% 156
Bolivia Bolivia 0.0665 +4.23% 46
Brazil Brazil 0.773 +2.86% 7
Barbados Barbados 0.0011 +10% 153
Brunei Brunei 0.0084 +2.44% 120
Bhutan Bhutan 0.0026 +4% 144
Botswana Botswana 0.0188 +3.3% 91
Central African Republic Central African Republic 0.0013 0% 151
Canada Canada 0.57 +1.77% 9
Switzerland Switzerland 0.0227 +0.442% 82
Chile Chile 0.0682 +1.79% 43
China China 6.41 +10% 1
Côte d’Ivoire Côte d’Ivoire 0.0339 -3.14% 69
Cameroon Cameroon 0.0281 +4.46% 74
Congo - Kinshasa Congo - Kinshasa 0.0183 +3.98% 92
Congo - Brazzaville Congo - Brazzaville 0.008 +3.9% 124
Colombia Colombia 0.187 +2.46% 28
Comoros Comoros 0.0012 0% 152
Cape Verde Cape Verde 0.0037 -2.63% 138
Costa Rica Costa Rica 0.0276 +6.56% 75
Cuba Cuba 0.0056 +5.66% 129
Cayman Islands Cayman Islands 0.0005 0% 156
Cyprus Cyprus 0.0036 0% 139
Czechia Czechia 0.0414 -4.17% 60
Germany Germany 0.191 -6.66% 27
Djibouti Djibouti 0.0022 0% 146
Dominica Dominica 0.0001 0% 160
Denmark Denmark 0.0152 -1.3% 98
Dominican Republic Dominican Republic 0.033 +5.1% 70
Algeria Algeria 0.275 +4.97% 19
Ecuador Ecuador 0.0952 +6.85% 40
Egypt Egypt 0.444 -1.92% 12
Eritrea Eritrea 0.0008 0% 154
Spain Spain 0.148 -6.44% 31
Estonia Estonia 0.0103 -2.83% 112
Ethiopia Ethiopia 0.0353 0% 67
Finland Finland 0.0181 -13% 94
Fiji Fiji 0.0024 +4.35% 145
France France 0.172 -5.4% 30
Gabon Gabon 0.0019 +5.56% 148
United Kingdom United Kingdom 0.128 -1.24% 36
Georgia Georgia 0.021 +2.44% 87
Ghana Ghana 0.0643 -3.02% 48
Gibraltar Gibraltar 0.0007 0% 155
Guinea Guinea 0.0112 -3.45% 110
Gambia Gambia 0.0022 -4.35% 146
Guinea-Bissau Guinea-Bissau 0.0013 0% 151
Equatorial Guinea Equatorial Guinea 0.0035 +6.06% 140
Greece Greece 0.0562 -2.43% 51
Grenada Grenada 0.0002 0% 159
Greenland Greenland 0.0002 0% 159
Guatemala Guatemala 0.0545 +6.24% 52
Guyana Guyana 0.0052 0% 131
Hong Kong SAR China Hong Kong SAR China 0.0203 +24.5% 90
Honduras Honduras 0.0226 +6.6% 83
Croatia Croatia 0.0117 0% 107
Haiti Haiti 0.0064 +4.92% 127
Hungary Hungary 0.0175 -6.42% 95
Indonesia Indonesia 0.888 +0.749% 6
India India 2.24 +5.56% 4
Ireland Ireland 0.0085 -3.41% 119
Iran Iran 2.6 +1.93% 3
Iraq Iraq 0.128 +6.15% 35
Iceland Iceland 0.0021 0% 147
Israel Israel 0.0533 -1.3% 54
Italy Italy 0.335 -3.85% 16
Jamaica Jamaica 0.0121 +5.22% 104
Jordan Jordan 0.0235 0% 80
Japan Japan 0.469 -4.42% 11
Kazakhstan Kazakhstan 0.125 +5.91% 37
Kenya Kenya 0.0674 0% 44
Kyrgyzstan Kyrgyzstan 0.0069 0% 125
Cambodia Cambodia 0.0311 +2.64% 72
Kiribati Kiribati 0.0001 0% 160
St. Kitts & Nevis St. Kitts & Nevis 0.0002 0% 159
South Korea South Korea 0.219 -1.83% 21
Kuwait Kuwait 0.0483 -1.02% 56
Laos Laos 0.0082 +2.5% 122
Lebanon Lebanon 0.0258 0% 77
Liberia Liberia 0.0052 -1.89% 131
Libya Libya 0.199 -0.549% 25
St. Lucia St. Lucia 0.0005 +25% 156
Sri Lanka Sri Lanka 0.0575 +9.73% 49
Lesotho Lesotho 0.0032 +3.23% 142
Lithuania Lithuania 0.012 -1.64% 105
Luxembourg Luxembourg 0.0034 -5.56% 141
Latvia Latvia 0.0052 -1.89% 131
Macao SAR China Macao SAR China 0.0043 +2.38% 135
Morocco Morocco 0.0666 -0.893% 45
Moldova Moldova 0.0097 +2.11% 115
Madagascar Madagascar 0.0067 0% 126
Maldives Maldives 0.0088 +2.33% 118
Mexico Mexico 0.701 +1.68% 8
North Macedonia North Macedonia 0.0058 0% 128
Mali Mali 0.0212 -3.2% 86
Malta Malta 0.0011 -8.33% 153
Myanmar (Burma) Myanmar (Burma) 0.038 +2.43% 64
Mongolia Mongolia 0.0113 +2.73% 109
Mozambique Mozambique 0.0204 0% 89
Mauritania Mauritania 0.0155 -3.13% 97
Mauritius Mauritius 0.008 0% 124
Malawi Malawi 0.0049 0% 133
Malaysia Malaysia 0.415 +11.6% 14
Namibia Namibia 0.0146 +2.82% 100
New Caledonia New Caledonia 0.004 +2.56% 137
Niger Niger 0.0098 -2.97% 114
Nigeria Nigeria 0.527 -3.09% 10
Nicaragua Nicaragua 0.0116 +6.42% 108
Netherlands Netherlands 0.0651 +0.93% 47
Norway Norway 0.037 +1.93% 66
Nepal Nepal 0.0268 +3.08% 76
New Zealand New Zealand 0.0776 +6.3% 42
Oman Oman 0.042 +2.69% 59
Pakistan Pakistan 0.424 -15.9% 13
Panama Panama 0.0247 +6.47% 78
Peru Peru 0.106 +2.71% 38
Philippines Philippines 0.178 +4.4% 29
Palau Palau 0.0016 +6.67% 149
Papua New Guinea Papua New Guinea 0.012 +2.56% 105
Poland Poland 0.214 -1.38% 23
Puerto Rico Puerto Rico 0.0089 +5.95% 117
North Korea North Korea 0.0139 +5.3% 102
Portugal Portugal 0.023 -6.88% 81
Paraguay Paraguay 0.0288 +1.77% 73
French Polynesia French Polynesia 0.0014 +7.69% 150
Qatar Qatar 0.0402 +4.96% 62
Romania Romania 0.0235 -3.29% 80
Russia Russia 0.927 +1.05% 5
Rwanda Rwanda 0.0042 0% 136
Saudi Arabia Saudi Arabia 0.403 +4.46% 15
Sudan Sudan 0.0651 +0.154% 47
Senegal Senegal 0.0174 -2.79% 96
Singapore Singapore 0.0312 +11.4% 71
Solomon Islands Solomon Islands 0.0005 +25% 156
Sierra Leone Sierra Leone 0.0034 -2.86% 141
El Salvador El Salvador 0.0216 +6.4% 85
Somalia Somalia 0.0031 0% 143
São Tomé & Príncipe São Tomé & Príncipe 0.0008 +14.3% 154
Suriname Suriname 0.0031 0% 143
Slovakia Slovakia 0.0054 -3.57% 130
Slovenia Slovenia 0.005 -12.3% 132
Sweden Sweden 0.0574 -3.37% 50
Eswatini Eswatini 0.0064 +3.23% 127
Seychelles Seychelles 0.0045 +2.27% 134
Syria Syria 0.013 0% 103
Turks & Caicos Islands Turks & Caicos Islands 0.0002 +100% 159
Chad Chad 0.0069 +4.55% 125
Togo Togo 0.0081 -2.41% 123
Thailand Thailand 0.327 +0.927% 17
Tajikistan Tajikistan 0.0083 0% 121
Turkmenistan Turkmenistan 0.041 0% 61
Timor-Leste Timor-Leste 0.0016 +6.67% 149
Tonga Tonga 0.0002 0% 159
Trinidad & Tobago Trinidad & Tobago 0.0111 +2.78% 111
Tunisia Tunisia 0.0432 -0.461% 58
Turkey Turkey 0.309 +4.18% 18
Tanzania Tanzania 0.0528 0% 55
Uganda Uganda 0.0238 0% 79
Ukraine Ukraine 0.0879 +1.62% 41
Uruguay Uruguay 0.0182 +1.11% 93
United States United States 3.62 +0.489% 2
Uzbekistan Uzbekistan 0.136 -2.51% 33
St. Vincent & Grenadines St. Vincent & Grenadines 0.0001 0% 160
Venezuela Venezuela 0.0966 +30.5% 39
British Virgin Islands British Virgin Islands 0.0001 0% 160
Vietnam Vietnam 0.21 +11.6% 24
Vanuatu Vanuatu 0.0003 0% 158
Samoa Samoa 0.0005 0% 156
Yemen Yemen 0.0096 0% 116
South Africa South Africa 0.218 +2.16% 22
Zambia Zambia 0.0148 0% 99
Zimbabwe Zimbabwe 0.0099 0% 113

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CH4.TR.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CH4.TR.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))