Methane (CH4) emissions from Power Industry (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0003 0% 121
Afghanistan Afghanistan 0.0016 +6.67% 108
Angola Angola 0.0055 0% 91
Albania Albania 0 124
United Arab Emirates United Arab Emirates 0.114 -5.15% 23
Argentina Argentina 0.0917 -4.18% 30
Armenia Armenia 0.0022 +10% 104
Antigua & Barbuda Antigua & Barbuda 0.0002 0% 122
Australia Australia 0.0977 -4.4% 28
Austria Austria 0.0861 -1.15% 32
Azerbaijan Azerbaijan 0.0197 +10.1% 66
Burundi Burundi 0.0003 0% 121
Belgium Belgium 0.0618 -2.98% 39
Benin Benin 0.0005 0% 119
Burkina Faso Burkina Faso 0.0014 0% 110
Bangladesh Bangladesh 0.065 -5.66% 38
Bulgaria Bulgaria 0.027 -8.47% 58
Bahrain Bahrain 0.0468 +4% 46
Bahamas Bahamas 0.0013 0% 111
Bosnia & Herzegovina Bosnia & Herzegovina 0.0053 -1.85% 92
Belarus Belarus 0.0618 -2.83% 39
Belize Belize 0.0015 0% 109
Bermuda Bermuda 0.0002 0% 122
Bolivia Bolivia 0.0195 +2.63% 67
Brazil Brazil 0.372 -1.17% 9
Barbados Barbados 0.0004 0% 120
Brunei Brunei 0.0058 +1.75% 89
Bhutan Bhutan 0.0004 0% 120
Botswana Botswana 0.0012 +9.09% 112
Central African Republic Central African Republic 0.0001 0% 123
Canada Canada 0.154 +2.12% 20
Switzerland Switzerland 0.0471 -0.633% 45
Chile Chile 0.174 -0.856% 18
China China 3.94 +2.19% 1
Côte d’Ivoire Côte d’Ivoire 0.0105 -2.78% 79
Cameroon Cameroon 0.0017 -5.56% 107
Congo - Kinshasa Congo - Kinshasa 0.0035 0% 101
Congo - Brazzaville Congo - Brazzaville 0.0037 -11.9% 99
Colombia Colombia 0.0331 +2.48% 53
Comoros Comoros 0.0001 0% 123
Cape Verde Cape Verde 0.0002 0% 122
Costa Rica Costa Rica 0.0019 0% 106
Cuba Cuba 0.0184 +3.95% 69
Cayman Islands Cayman Islands 0.0002 0% 122
Cyprus Cyprus 0.0023 0% 103
Czechia Czechia 0.0512 -4.3% 43
Germany Germany 0.389 -4.83% 8
Djibouti Djibouti 0.0001 0% 123
Dominica Dominica 0.0001 0% 123
Denmark Denmark 0.112 -0.444% 24
Dominican Republic Dominican Republic 0.009 +4.65% 82
Algeria Algeria 0.0779 -7.92% 34
Ecuador Ecuador 0.0071 +2.9% 85
Egypt Egypt 0.11 +1.19% 26
Eritrea Eritrea 0.0003 0% 121
Spain Spain 0.115 -11.6% 22
Estonia Estonia 0.0318 -2.15% 56
Ethiopia Ethiopia 0 124
Finland Finland 0.16 -0.125% 19
Fiji Fiji 0.0005 0% 119
France France 0.2 -5.97% 17
Gabon Gabon 0.0014 0% 110
United Kingdom United Kingdom 0.335 -4.78% 11
Georgia Georgia 0.0011 +10% 113
Ghana Ghana 0.0114 -3.39% 77
Gibraltar Gibraltar 0.0001 0% 123
Guinea Guinea 0.0009 0% 115
Gambia Gambia 0.0001 -50% 123
Guinea-Bissau Guinea-Bissau 0.0001 0% 123
Equatorial Guinea Equatorial Guinea 0.0008 -11.1% 116
Greece Greece 0.0182 -11.2% 70
Grenada Grenada 0.0001 0% 123
Greenland Greenland 0.0003 0% 121
Guatemala Guatemala 0.0757 +0.265% 36
Guyana Guyana 0.0011 +10% 113
Hong Kong SAR China Hong Kong SAR China 0.0234 +5.41% 60
Honduras Honduras 0.0168 +1.2% 71
Croatia Croatia 0.0127 0% 76
Haiti Haiti 0.001 +11.1% 114
Hungary Hungary 0.0324 -2.99% 55
Indonesia Indonesia 0.408 +1.95% 7
India India 1.1 +3.49% 3
Ireland Ireland 0.0225 -2.17% 62
Iran Iran 0.267 +2.3% 12
Iraq Iraq 0.0918 +3.49% 29
Iceland Iceland 0 124
Israel Israel 0.0355 +2.01% 51
Italy Italy 0.226 -7.86% 14
Jamaica Jamaica 0.004 +14.3% 96
Jordan Jordan 0.011 +2.8% 78
Japan Japan 0.617 -4.06% 5
Kazakhstan Kazakhstan 0.043 -1.38% 49
Kenya Kenya 0.0039 0% 97
Kyrgyzstan Kyrgyzstan 0.0008 0% 116
Cambodia Cambodia 0.0023 +4.55% 103
Kiribati Kiribati 0 124
St. Kitts & Nevis St. Kitts & Nevis 0.0001 0% 123
South Korea South Korea 0.246 -2.23% 13
Kuwait Kuwait 0.0753 +1.89% 37
Laos Laos 0.0055 +5.77% 91
Lebanon Lebanon 0.0074 0% 83
Liberia Liberia 0.0005 0% 119
Libya Libya 0.0318 +7.07% 56
St. Lucia St. Lucia 0.0003 0% 121
Sri Lanka Sri Lanka 0.005 0% 93
Lesotho Lesotho 0.0002 0% 122
Lithuania Lithuania 0.0344 +1.47% 52
Luxembourg Luxembourg 0.0064 0% 86
Latvia Latvia 0.0204 -0.488% 65
Macao SAR China Macao SAR China 0.0009 0% 115
Morocco Morocco 0.0094 +27% 81
Moldova Moldova 0.0029 +7.41% 102
Madagascar Madagascar 0.0016 0% 108
Maldives Maldives 0.0007 0% 117
Mexico Mexico 0.219 +6.06% 16
North Macedonia North Macedonia 0.0019 +11.8% 106
Mali Mali 0.0014 0% 110
Malta Malta 0.0004 0% 120
Myanmar (Burma) Myanmar (Burma) 0.009 +2.27% 82
Mongolia Mongolia 0.0049 +8.89% 94
Mozambique Mozambique 0.0036 +2.86% 100
Mauritania Mauritania 0.001 0% 114
Mauritius Mauritius 0.0053 +1.92% 92
Malawi Malawi 0.0007 0% 117
Malaysia Malaysia 0.0856 +1.42% 33
Namibia Namibia 0 124
New Caledonia New Caledonia 0.0008 0% 116
Niger Niger 0.0005 0% 119
Nigeria Nigeria 0.0226 -3% 61
Nicaragua Nicaragua 0.014 +0.719% 73
Netherlands Netherlands 0.154 -2.1% 21
Norway Norway 0.022 0% 63
Nepal Nepal 0 124
New Zealand New Zealand 0.0197 +0.51% 66
Oman Oman 0.0329 +3.13% 54
Pakistan Pakistan 0.0464 -5.11% 47
Panama Panama 0.0098 +48.5% 80
Peru Peru 0.0275 +1.85% 57
Philippines Philippines 0.0472 +4.66% 44
Palau Palau 0.0005 0% 119
Papua New Guinea Papua New Guinea 0.0017 0% 107
Poland Poland 0.112 -1.15% 25
Puerto Rico Puerto Rico 0.0061 +8.93% 88
North Korea North Korea 0.0029 +11.5% 102
Portugal Portugal 0.0523 -4.74% 42
Paraguay Paraguay 0 124
French Polynesia French Polynesia 0.0003 0% 121
Qatar Qatar 0.0539 +9.55% 41
Romania Romania 0.0149 -6.88% 72
Russia Russia 0.728 +1.48% 4
Rwanda Rwanda 0.0003 0% 121
Saudi Arabia Saudi Arabia 0.342 +5.04% 10
Sudan Sudan 0.0044 0% 95
Senegal Senegal 0.0056 -1.75% 90
Singapore Singapore 0.0578 -3.67% 40
Solomon Islands Solomon Islands 0.0001 0% 123
Sierra Leone Sierra Leone 0.0003 0% 121
El Salvador El Salvador 0.0131 +0.769% 75
Somalia Somalia 0.0005 0% 119
São Tomé & Príncipe São Tomé & Príncipe 0 124
Suriname Suriname 0.0011 +10% 113
Slovakia Slovakia 0.0213 0% 64
Slovenia Slovenia 0.0044 -2.22% 95
Sweden Sweden 0.224 +0.269% 15
Eswatini Eswatini 0.0022 0% 104
Seychelles Seychelles 0.0003 0% 121
Syria Syria 0.011 +1.85% 78
Turks & Caicos Islands Turks & Caicos Islands 0.0001 0% 123
Chad Chad 0.0005 0% 119
Togo Togo 0.0003 0% 121
Thailand Thailand 0.431 +2.57% 6
Tajikistan Tajikistan 0.0004 0% 120
Turkmenistan Turkmenistan 0.024 -2.04% 59
Timor-Leste Timor-Leste 0.0002 0% 122
Tonga Tonga 0.0001 0% 123
Trinidad & Tobago Trinidad & Tobago 0.0073 -6.41% 84
Tunisia Tunisia 0.0184 +9.52% 69
Turkey Turkey 0.11 -2.05% 27
Tanzania Tanzania 0.0063 +1.61% 87
Uganda Uganda 0.0038 0% 98
Ukraine Ukraine 0.0767 +0.788% 35
Uruguay Uruguay 0.0139 +0.725% 74
United States United States 1.92 +1.43% 2
Uzbekistan Uzbekistan 0.0382 -2.55% 50
St. Vincent & Grenadines St. Vincent & Grenadines 0.0001 0% 123
Venezuela Venezuela 0.0188 +13.9% 68
British Virgin Islands British Virgin Islands 0.0001 0% 123
Vietnam Vietnam 0.0915 +4.57% 31
Vanuatu Vanuatu 0.0001 0% 123
Samoa Samoa 0.0001 0% 123
Yemen Yemen 0.002 0% 105
South Africa South Africa 0.0448 -4.88% 48
Zambia Zambia 0.0006 0% 118
Zimbabwe Zimbabwe 0.001 +11.1% 114

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CH4.PI.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CH4.PI.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))