Methane (CH4) emissions from Industrial Combustion (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0001 0% 129
Afghanistan Afghanistan 0.0095 +7.95% 84
Angola Angola 0.0058 0% 93
Albania Albania 0.0021 -4.55% 112
United Arab Emirates United Arab Emirates 0.0575 +1.59% 38
Argentina Argentina 0.0328 -2.38% 51
Armenia Armenia 0.0003 0% 127
Antigua & Barbuda Antigua & Barbuda 0 130
Australia Australia 0.152 -0.262% 17
Austria Austria 0.0659 -0.603% 34
Azerbaijan Azerbaijan 0.0019 +11.8% 113
Burundi Burundi 0.0009 0% 121
Belgium Belgium 0.0413 -3.05% 47
Benin Benin 0.0015 -6.25% 117
Burkina Faso Burkina Faso 0.0021 0% 112
Bangladesh Bangladesh 0.0538 +34.2% 40
Bulgaria Bulgaria 0.0153 -4.38% 68
Bahrain Bahrain 0.0011 0% 120
Bahamas Bahamas 0.0004 0% 126
Bosnia & Herzegovina Bosnia & Herzegovina 0.0019 -5% 113
Belarus Belarus 0.0101 +1% 79
Belize Belize 0.0011 -8.33% 120
Bermuda Bermuda 0 130
Bolivia Bolivia 0.0208 0% 62
Brazil Brazil 2.26 -0.0531% 3
Barbados Barbados 0.0001 0% 129
Brunei Brunei 0.0005 0% 125
Bhutan Bhutan 0.0031 0% 105
Botswana Botswana 0.0013 +8.33% 119
Central African Republic Central African Republic 0.0002 0% 128
Canada Canada 0.268 -0.26% 10
Switzerland Switzerland 0.0204 -0.488% 63
Chile Chile 0.0714 -0.833% 31
China China 4.39 +5.09% 1
Côte d’Ivoire Côte d’Ivoire 0.0017 0% 115
Cameroon Cameroon 0.0019 +5.56% 113
Congo - Kinshasa Congo - Kinshasa 0.0133 0% 73
Congo - Brazzaville Congo - Brazzaville 0.0013 0% 119
Colombia Colombia 0.0947 +17.9% 24
Comoros Comoros 0.0001 0% 129
Cape Verde Cape Verde 0.0002 0% 128
Costa Rica Costa Rica 0.0141 +0.714% 70
Cuba Cuba 0.0348 +0.288% 50
Cayman Islands Cayman Islands 0 130
Cyprus Cyprus 0.0037 +5.71% 102
Czechia Czechia 0.036 -1.91% 49
Germany Germany 0.22 -3.68% 13
Djibouti Djibouti 0.0001 0% 129
Dominica Dominica 0.0001 0% 129
Denmark Denmark 0.0099 -3.88% 81
Dominican Republic Dominican Republic 0.014 +1.45% 71
Algeria Algeria 0.0096 -4.95% 83
Ecuador Ecuador 0.011 +1.85% 77
Egypt Egypt 0.0444 +6.99% 45
Eritrea Eritrea 0 130
Spain Spain 0.0932 -2.41% 26
Estonia Estonia 0.0009 0% 121
Ethiopia Ethiopia 0.0068 +4.62% 90
Finland Finland 0.146 -0.611% 19
Fiji Fiji 0.0007 0% 123
France France 0.101 -6.97% 22
Gabon Gabon 0.1 +0.0999% 23
United Kingdom United Kingdom 0.0748 -3.86% 28
Georgia Georgia 0.0026 -3.7% 109
Ghana Ghana 0.0181 -0.549% 66
Guinea Guinea 0.0016 0% 116
Gambia Gambia 0.0002 0% 128
Guinea-Bissau Guinea-Bissau 0.0003 0% 127
Equatorial Guinea Equatorial Guinea 0.0005 -16.7% 125
Greece Greece 0.0079 -7.06% 86
Grenada Grenada 0 130
Greenland Greenland 0.0001 0% 129
Guatemala Guatemala 0.0027 +8% 108
Guyana Guyana 0.0038 0% 101
Hong Kong SAR China Hong Kong SAR China 0.0024 +26.3% 111
Honduras Honduras 0.0072 +1.41% 89
Croatia Croatia 0.0057 +1.79% 94
Haiti Haiti 0.0037 0% 102
Hungary Hungary 0.0182 -1.09% 65
Indonesia Indonesia 0.638 -0.499% 5
India India 4.17 +2.46% 2
Ireland Ireland 0.012 -2.44% 75
Iran Iran 0.0743 +1.64% 29
Iraq Iraq 0.0137 +3.79% 72
Iceland Iceland 0.0001 0% 129
Israel Israel 0.005 +2.04% 96
Italy Italy 0.0537 -6.93% 41
Jamaica Jamaica 0.0024 +4.35% 111
Jordan Jordan 0.0065 +62.5% 91
Japan Japan 0.303 -3.38% 9
Kazakhstan Kazakhstan 0.0584 -0.68% 36
Kenya Kenya 0.0325 +2.85% 52
Kyrgyzstan Kyrgyzstan 0.0006 0% 124
Cambodia Cambodia 0.0419 +0.239% 46
Kiribati Kiribati 0 130
St. Kitts & Nevis St. Kitts & Nevis 0 130
South Korea South Korea 0.148 -2.18% 18
Kuwait Kuwait 0.0102 +3.03% 78
Laos Laos 0.0043 +2.38% 99
Lebanon Lebanon 0.0034 +70% 103
Liberia Liberia 0.0011 0% 120
Libya Libya 0.0018 +5.88% 114
St. Lucia St. Lucia 0.0001 0% 129
Sri Lanka Sri Lanka 0.0737 0% 30
Lesotho Lesotho 0.0003 0% 127
Lithuania Lithuania 0.0057 -8.06% 94
Luxembourg Luxembourg 0.0019 -5% 113
Latvia Latvia 0.0166 0% 67
Macao SAR China Macao SAR China 0.0004 0% 126
Morocco Morocco 0.01 +2.04% 80
Moldova Moldova 0.0008 0% 122
Madagascar Madagascar 0.0199 +0.505% 64
Maldives Maldives 0.0004 0% 126
Mexico Mexico 0.0946 +1.94% 25
North Macedonia North Macedonia 0.0025 +4.17% 110
Mali Mali 0.0014 -6.67% 118
Malta Malta 0.0001 0% 129
Myanmar (Burma) Myanmar (Burma) 0.0242 +1.68% 57
Mongolia Mongolia 0.0041 +5.13% 100
Mozambique Mozambique 0.0218 0% 61
Mauritania Mauritania 0.0009 0% 121
Mauritius Mauritius 0.0009 +12.5% 121
Malawi Malawi 0.011 +10% 77
Malaysia Malaysia 0.0235 +0.858% 59
Namibia Namibia 0.0016 0% 116
New Caledonia New Caledonia 0.0061 +8.93% 92
Niger Niger 0.0003 0% 127
Nigeria Nigeria 0.172 -0.637% 15
Nicaragua Nicaragua 0.0029 +3.57% 107
Netherlands Netherlands 0.0146 -4.58% 69
Norway Norway 0.0375 +0.806% 48
Nepal Nepal 0.0456 +2.93% 43
New Zealand New Zealand 0.0228 -0.437% 60
Oman Oman 0.0078 +4% 87
Pakistan Pakistan 0.259 -1.75% 12
Panama Panama 0.0044 0% 98
Peru Peru 0.0304 0% 53
Philippines Philippines 0.0657 +4.12% 35
Palau Palau 0.0001 0% 129
Papua New Guinea Papua New Guinea 0.003 0% 106
Poland Poland 0.116 -2.94% 20
Puerto Rico Puerto Rico 0.0001 0% 129
North Korea North Korea 0.0908 +8.74% 27
Portugal Portugal 0.0448 -1.1% 44
Paraguay Paraguay 0.0488 0% 42
French Polynesia French Polynesia 0.0002 0% 128
Qatar Qatar 0.0116 +7.41% 76
Romania Romania 0.0281 +2.55% 55
Russia Russia 0.545 +3.09% 6
Rwanda Rwanda 0.0048 0% 97
Saudi Arabia Saudi Arabia 0.071 +2.16% 32
Sudan Sudan 0.0283 0% 54
Senegal Senegal 0.0052 -3.7% 95
Singapore Singapore 0.0098 +1.03% 82
Solomon Islands Solomon Islands 0.0001 0% 129
Sierra Leone Sierra Leone 0.0007 0% 123
El Salvador El Salvador 0.0018 +5.88% 114
Somalia Somalia 0.0016 0% 116
São Tomé & Príncipe São Tomé & Príncipe 0 130
Suriname Suriname 0.0003 0% 127
Slovakia Slovakia 0.0237 -0.837% 58
Slovenia Slovenia 0.0057 0% 94
Sweden Sweden 0.187 +0.0534% 14
Eswatini Eswatini 0.011 0% 77
Seychelles Seychelles 0.0002 0% 128
Syria Syria 0.0024 0% 111
Turks & Caicos Islands Turks & Caicos Islands 0 130
Chad Chad 0.0011 0% 120
Togo Togo 0.0008 0% 122
Thailand Thailand 0.357 -3.86% 8
Tajikistan Tajikistan 0.0032 +3.23% 104
Turkmenistan Turkmenistan 0.0003 0% 127
Timor-Leste Timor-Leste 0.0001 0% 129
Tonga Tonga 0 130
Trinidad & Tobago Trinidad & Tobago 0.0011 -8.33% 120
Tunisia Tunisia 0.0037 +2.78% 102
Turkey Turkey 0.108 -2.61% 21
Tanzania Tanzania 0.0568 +1.43% 39
Uganda Uganda 0.259 0% 11
Ukraine Ukraine 0.0257 -7.55% 56
Uruguay Uruguay 0.0581 -0.172% 37
United States United States 1.48 -1.22% 4
Uzbekistan Uzbekistan 0.0075 0% 88
St. Vincent & Grenadines St. Vincent & Grenadines 0.0001 0% 129
Venezuela Venezuela 0.0122 +6.09% 74
British Virgin Islands British Virgin Islands 0 130
Vietnam Vietnam 0.486 +12% 7
Vanuatu Vanuatu 0.0001 0% 129
Samoa Samoa 0.0001 0% 129
Yemen Yemen 0.0027 +42.1% 108
South Africa South Africa 0.156 -0.699% 16
Zambia Zambia 0.0702 +0.286% 33
Zimbabwe Zimbabwe 0.0091 +3.41% 85

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CH4.IC.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CH4.IC.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))