Methane (CH4) emissions from Fugitive Emissions (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0023 0% 169
Afghanistan Afghanistan 2.03 +3.15% 78
Angola Angola 21.3 -2.9% 24
Albania Albania 0.234 -0.68% 131
United Arab Emirates United Arab Emirates 27.6 -2% 17
Argentina Argentina 12 +4.66% 35
Armenia Armenia 0.344 +0.291% 124
Antigua & Barbuda Antigua & Barbuda 0 180
Australia Australia 50.3 +2.06% 11
Austria Austria 0.77 +2.67% 111
Azerbaijan Azerbaijan 5.26 +1.69% 52
Burundi Burundi 0.917 0% 107
Belgium Belgium 2.67 +0.817% 68
Benin Benin 1.62 0% 83
Burkina Faso Burkina Faso 1.93 0% 80
Bangladesh Bangladesh 2.4 -5.14% 73
Bulgaria Bulgaria 0.866 -29.5% 109
Bahrain Bahrain 22.9 -0.32% 23
Bahamas Bahamas 0.0095 0% 159
Bosnia & Herzegovina Bosnia & Herzegovina 2.97 -2.1% 66
Belarus Belarus 2.3 +2.28% 75
Belize Belize 0.0119 -4.8% 157
Bermuda Bermuda 0.0001 0% 179
Bolivia Bolivia 2.4 -7.39% 72
Brazil Brazil 34.4 +4.62% 14
Barbados Barbados 0.0069 -5.48% 161
Brunei Brunei 1.56 -2.8% 85
Bhutan Bhutan 0.0698 -5.42% 148
Botswana Botswana 1.28 +2.47% 91
Central African Republic Central African Republic 0.567 0% 117
Canada Canada 68.7 +2.55% 10
Switzerland Switzerland 1.22 +6.34% 96
Chile Chile 0.943 +3.44% 104
China China 735 +1.97% 1
Côte d’Ivoire Côte d’Ivoire 4.68 -0.554% 54
Cameroon Cameroon 7.34 -5.46% 49
Congo - Kinshasa Congo - Kinshasa 16.1 +0.232% 28
Congo - Brazzaville Congo - Brazzaville 13.8 +3.41% 33
Colombia Colombia 11.9 -0.512% 36
Comoros Comoros 0.129 0% 142
Cape Verde Cape Verde 0.0022 0% 170
Costa Rica Costa Rica 0.0033 0% 164
Cuba Cuba 0.483 +1.36% 120
Cayman Islands Cayman Islands 0 180
Cyprus Cyprus 0.0056 0% 162
Czechia Czechia 2.29 -8.08% 76
Germany Germany 9.73 -6.31% 42
Djibouti Djibouti 0.138 0% 141
Dominica Dominica 0.0019 0% 172
Denmark Denmark 0.482 +3.34% 121
Dominican Republic Dominican Republic 0.278 +0.216% 127
Algeria Algeria 38.5 -1.47% 13
Ecuador Ecuador 8.73 -1.16% 45
Egypt Egypt 20.3 -2.34% 25
Eritrea Eritrea 0.484 0% 119
Spain Spain 1.34 +2.18% 89
Estonia Estonia 0.0755 +4.28% 147
Ethiopia Ethiopia 5.09 +0.00393% 53
Finland Finland 0.142 +4.04% 139
Fiji Fiji 0.0072 0% 160
France France 3.31 +0.87% 63
Gabon Gabon 14.1 +16.9% 32
United Kingdom United Kingdom 3.68 -5.45% 59
Georgia Georgia 0.126 +0.959% 143
Ghana Ghana 9.41 +3.81% 43
Guinea Guinea 1.14 0% 100
Gambia Gambia 0.18 0% 134
Guinea-Bissau Guinea-Bissau 0.203 0% 132
Equatorial Guinea Equatorial Guinea 2.47 -24.4% 71
Greece Greece 1.94 -3.23% 79
Grenada Grenada 0 180
Guatemala Guatemala 0.253 -0.862% 129
Guyana Guyana 1.55 -8.42% 86
Hong Kong SAR China Hong Kong SAR China 0.0693 +1.76% 149
Honduras Honduras 0.0033 0% 164
Croatia Croatia 0.287 -2.08% 125
Haiti Haiti 3.68 0% 60
Hungary Hungary 2.09 -0.0526% 77
Indonesia Indonesia 262 +11.7% 4
India India 100 +8.63% 7
Ireland Ireland 1.24 -0.776% 94
Iran Iran 128 +13.8% 6
Iraq Iraq 144 -3.85% 5
Iceland Iceland 0 180
Israel Israel 0.566 +7.75% 118
Italy Italy 4.51 -0.245% 55
Jamaica Jamaica 0.0786 +0.769% 146
Jordan Jordan 0.15 +1.08% 138
Japan Japan 3.66 -1.58% 62
Kazakhstan Kazakhstan 27.6 -2.05% 18
Kenya Kenya 7.84 0% 47
Kyrgyzstan Kyrgyzstan 0.947 +7.7% 103
Cambodia Cambodia 1.14 +0.0352% 101
Kiribati Kiribati 0.0013 0% 175
St. Kitts & Nevis St. Kitts & Nevis 0 180
South Korea South Korea 3.77 -0.849% 58
Kuwait Kuwait 28.3 -3.5% 16
Laos Laos 1.79 +2.17% 81
Lebanon Lebanon 0.0147 0% 156
Liberia Liberia 0.862 0% 110
Libya Libya 23.1 +11% 22
St. Lucia St. Lucia 0.0028 0% 167
Sri Lanka Sri Lanka 0.0097 -11.8% 158
Lesotho Lesotho 0.285 0% 126
Lithuania Lithuania 0.258 +3.12% 128
Luxembourg Luxembourg 0.0272 +1.12% 153
Latvia Latvia 0.193 +2.93% 133
Macao SAR China Macao SAR China 0.0033 0% 164
Morocco Morocco 0.14 -0.0715% 140
Moldova Moldova 0.0903 +0.445% 145
Madagascar Madagascar 2.99 0% 65
Maldives Maldives 0.0027 0% 168
Mexico Mexico 12.9 +4.26% 34
North Macedonia North Macedonia 0.121 -4.59% 144
Mali Mali 1.15 0% 99
Malta Malta 0 180
Myanmar (Burma) Myanmar (Burma) 1.2 -0.663% 97
Mongolia Mongolia 26.3 +110% 19
Mozambique Mozambique 11.4 +1.08% 37
Mauritania Mauritania 0.598 0% 116
Mauritius Mauritius 0.0008 0% 176
Malawi Malawi 1.65 +0.261% 82
Malaysia Malaysia 9.79 +0.895% 41
Namibia Namibia 0.94 0% 105
New Caledonia New Caledonia 0.002 0% 171
Niger Niger 0.444 +0.453% 122
Nigeria Nigeria 79.1 +5.24% 8
Nicaragua Nicaragua 0.0331 +0.608% 152
Netherlands Netherlands 1.58 -6.67% 84
Norway Norway 4.33 +0.676% 57
Nepal Nepal 0.069 -1.15% 150
New Zealand New Zealand 0.648 -3.79% 114
Oman Oman 26 -0.873% 20
Pakistan Pakistan 16 +12.7% 29
Panama Panama 0.0029 0% 166
Peru Peru 2.48 -0.101% 70
Philippines Philippines 11.2 +1.79% 38
Palau Palau 0.027 -9.4% 154
Papua New Guinea Papua New Guinea 1.35 -3.1% 88
Poland Poland 15 -8.84% 30
Puerto Rico Puerto Rico 0.0016 0% 174
North Korea North Korea 10.3 -6.42% 40
Portugal Portugal 0.903 +5.69% 108
Paraguay Paraguay 1.25 +0.008% 93
French Polynesia French Polynesia 0.0016 0% 174
Qatar Qatar 18.5 +1.63% 26
Romania Romania 2.7 -6.12% 67
Russia Russia 270 -0.619% 3
Rwanda Rwanda 0.935 +0.0321% 106
Saudi Arabia Saudi Arabia 70.7 -7.11% 9
Sudan Sudan 7.84 -1.5% 48
Senegal Senegal 0.618 -0.0162% 115
Singapore Singapore 0.425 -2.81% 123
Solomon Islands Solomon Islands 0.0046 0% 163
Sierra Leone Sierra Leone 1.22 0% 95
El Salvador El Salvador 0.0006 0% 178
Somalia Somalia 3.67 0% 61
São Tomé & Príncipe São Tomé & Príncipe 0.0248 0% 155
Suriname Suriname 0.16 -8.34% 137
Slovakia Slovakia 0.767 -0.273% 112
Slovenia Slovenia 0.753 -6.74% 113
Sweden Sweden 0.177 -4.68% 135
Eswatini Eswatini 0.234 -0.0855% 130
Seychelles Seychelles 0 180
Syria Syria 1.31 -4.15% 90
Turks & Caicos Islands Turks & Caicos Islands 0.0013 0% 175
Chad Chad 3.08 +4.55% 64
Togo Togo 2.51 0% 69
Thailand Thailand 6.44 -0.906% 51
Tajikistan Tajikistan 1.16 +2.96% 98
Turkmenistan Turkmenistan 14.5 -3.12% 31
Timor-Leste Timor-Leste 0.168 -8.24% 136
Tonga Tonga 0.0007 0% 177
Trinidad & Tobago Trinidad & Tobago 1.08 -2.81% 102
Tunisia Tunisia 2.38 -1.97% 74
Turkey Turkey 7.91 -12.4% 46
Tanzania Tanzania 6.81 +2.78% 50
Uganda Uganda 8.83 0% 44
Ukraine Ukraine 34.2 +1.55% 15
Uruguay Uruguay 0.042 -1.64% 151
United States United States 442 +3.55% 2
Uzbekistan Uzbekistan 18.3 -5.47% 27
St. Vincent & Grenadines St. Vincent & Grenadines 0.003 0% 165
Venezuela Venezuela 10.8 +13% 39
British Virgin Islands British Virgin Islands 0.0007 0% 177
Vietnam Vietnam 24.1 -3.02% 21
Vanuatu Vanuatu 0.002 0% 171
Samoa Samoa 0.0017 0% 173
Yemen Yemen 1.48 -46.8% 87
South Africa South Africa 39.6 -0.685% 12
Zambia Zambia 4.4 +0.00454% 56
Zimbabwe Zimbabwe 1.26 +24.3% 92

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CH4.FE.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CH4.FE.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))