Methane (CH4) emissions from Building (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0004 0% 172
Afghanistan Afghanistan 0.198 +0.0506% 101
Angola Angola 1.75 +0.0401% 29
Albania Albania 0.0494 0% 129
United Arab Emirates United Arab Emirates 0.0147 +0.685% 146
Argentina Argentina 0.183 -1.45% 105
Armenia Armenia 0.0517 +1.57% 128
Antigua & Barbuda Antigua & Barbuda 0.0001 0% 175
Australia Australia 0.465 +0.043% 72
Austria Austria 0.626 -0.239% 61
Azerbaijan Azerbaijan 0.0351 +7.67% 135
Burundi Burundi 0.779 0% 51
Belgium Belgium 0.278 -1.91% 91
Benin Benin 0.696 0% 56
Burkina Faso Burkina Faso 1.26 0% 35
Bangladesh Bangladesh 3.45 -0.298% 13
Bulgaria Bulgaria 0.319 -7.07% 84
Bahrain Bahrain 0.0006 0% 170
Bahamas Bahamas 0.0031 0% 160
Bosnia & Herzegovina Bosnia & Herzegovina 0.468 -0.256% 71
Belarus Belarus 0.284 +0.212% 89
Belize Belize 0.0084 0% 152
Bermuda Bermuda 0.0001 0% 175
Bolivia Bolivia 0.024 +0.84% 141
Brazil Brazil 3.97 +0.0706% 9
Barbados Barbados 0.0006 0% 170
Brunei Brunei 0.0003 0% 173
Bhutan Bhutan 0.472 0% 70
Botswana Botswana 0.156 0% 109
Central African Republic Central African Republic 0.188 0% 104
Canada Canada 0.855 -0.466% 47
Switzerland Switzerland 0.245 -0.366% 97
Chile Chile 0.667 +0.015% 59
China China 43.6 +2.18% 1
Côte d’Ivoire Côte d’Ivoire 1.43 -0.014% 33
Cameroon Cameroon 2.18 +0.00459% 23
Congo - Kinshasa Congo - Kinshasa 6.22 0% 7
Congo - Brazzaville Congo - Brazzaville 0.453 +0.0221% 74
Colombia Colombia 0.937 +1.1% 42
Comoros Comoros 0.0348 0% 136
Cape Verde Cape Verde 0.0181 0% 144
Costa Rica Costa Rica 0.0271 +0.37% 140
Cuba Cuba 0.0374 +2.47% 134
Cayman Islands Cayman Islands 0.0001 0% 175
Cyprus Cyprus 0.0104 0% 151
Czechia Czechia 1 -3.77% 41
Germany Germany 3.38 -0.901% 16
Djibouti Djibouti 0.0401 0% 133
Dominica Dominica 0.0006 0% 170
Denmark Denmark 0.269 -0.148% 93
Dominican Republic Dominican Republic 0.179 +0.112% 106
Algeria Algeria 0.0772 -5.74% 119
Ecuador Ecuador 0.074 +1.79% 121
Egypt Egypt 0.477 -0.146% 69
Eritrea Eritrea 0.19 +0.105% 103
Spain Spain 0.802 -1.62% 49
Estonia Estonia 0.153 -0.131% 110
Ethiopia Ethiopia 14.9 +0.157% 4
Finland Finland 0.506 -0.726% 66
Fiji Fiji 0.0042 +2.44% 159
France France 2.49 -0.3% 20
Faroe Islands Faroe Islands 0 176
Gabon Gabon 0.379 0% 78
United Kingdom United Kingdom 0.767 -4.37% 52
Georgia Georgia 0.0956 +0.21% 113
Ghana Ghana 0.909 -0.011% 44
Gibraltar Gibraltar 0 176
Guinea Guinea 1.03 0% 39
Gambia Gambia 0.0725 0% 122
Guinea-Bissau Guinea-Bissau 0.246 0% 96
Equatorial Guinea Equatorial Guinea 0.0336 +0.299% 137
Greece Greece 0.268 -0.261% 94
Grenada Grenada 0 176
Greenland Greenland 0.0007 0% 169
Guatemala Guatemala 2.64 +0.00757% 19
Guam Guam 0.0002 0% 174
Guyana Guyana 0.0079 0% 153
Hong Kong SAR China Hong Kong SAR China 0.0051 +8.51% 157
Honduras Honduras 0.487 +0.0206% 68
Croatia Croatia 0.4 0% 77
Haiti Haiti 0.764 +0.0131% 53
Hungary Hungary 0.503 -1.57% 67
Indonesia Indonesia 3.34 +0.027% 17
India India 39 +0.83% 2
Ireland Ireland 0.116 -23.4% 112
Iran Iran 0.643 +1.4% 60
Iraq Iraq 0.0421 +4.99% 132
Iceland Iceland 0.0013 -7.14% 166
Israel Israel 0.012 0% 147
Italy Italy 2.25 -0.505% 22
Jamaica Jamaica 0.0294 +0.341% 138
Jordan Jordan 0.0285 0% 139
Japan Japan 1.05 -2.27% 38
Kazakhstan Kazakhstan 1.41 -1.58% 34
Kenya Kenya 3.39 0% 15
Kyrgyzstan Kyrgyzstan 0.0954 +1.38% 114
Cambodia Cambodia 0.672 +0.0149% 58
Kiribati Kiribati 0.0004 0% 172
St. Kitts & Nevis St. Kitts & Nevis 0 176
South Korea South Korea 0.351 -3.2% 82
Kuwait Kuwait 0.0024 0% 163
Laos Laos 0.43 0% 75
Lebanon Lebanon 0.048 0% 131
Liberia Liberia 0.855 -0.0117% 47
Libya Libya 0.0876 -0.114% 118
St. Lucia St. Lucia 0.0008 0% 168
Sri Lanka Sri Lanka 0.685 +0.0438% 57
Lesotho Lesotho 0.229 -0.477% 98
Lithuania Lithuania 0.192 -3.03% 102
Luxembourg Luxembourg 0.0106 -1.85% 149
Latvia Latvia 0.177 -0.113% 107
Macao SAR China Macao SAR China 0.0017 0% 165
Morocco Morocco 0.418 -0.0478% 76
Moldova Moldova 0.272 +0.184% 92
Madagascar Madagascar 1.71 0% 30
Maldives Maldives 0.0025 0% 162
Mexico Mexico 2.11 +0.0568% 25
North Macedonia North Macedonia 0.069 +0.145% 123
Mali Mali 0.533 0% 65
Malta Malta 0.0009 0% 167
Myanmar (Burma) Myanmar (Burma) 3.63 +0.011% 11
Mongolia Mongolia 0.299 +8.21% 85
Mozambique Mozambique 1.68 0% 31
Mauritania Mauritania 0.217 0% 99
Mauritius Mauritius 0.0018 0% 164
Malawi Malawi 0.577 +0.104% 62
Malaysia Malaysia 0.0224 +12% 142
Namibia Namibia 0.0626 +0.16% 125
New Caledonia New Caledonia 0.0024 0% 163
Niger Niger 1.01 +0.0495% 40
Nigeria Nigeria 38.3 -0.00131% 3
Nicaragua Nicaragua 0.375 +0.0267% 79
Netherlands Netherlands 0.293 -0.98% 86
Norway Norway 0.215 0% 100
Nepal Nepal 3.42 0% 14
New Zealand New Zealand 0.094 -1.05% 117
Oman Oman 0.0582 +3.01% 127
Pakistan Pakistan 11.8 -0.0382% 5
Panama Panama 0.0598 +0.336% 126
Peru Peru 0.807 +0.0372% 48
Philippines Philippines 2.06 +0.0875% 26
Palau Palau 0.0003 0% 173
Papua New Guinea Papua New Guinea 0.461 0% 73
Poland Poland 3.53 -7.37% 12
Puerto Rico Puerto Rico 0.0026 +8.33% 161
North Korea North Korea 1.13 +6.33% 37
Portugal Portugal 0.291 -0.274% 87
Paraguay Paraguay 0.353 0% 80
French Polynesia French Polynesia 0.0009 0% 167
Qatar Qatar 0.0025 0% 162
Romania Romania 1.16 -0.584% 36
Russia Russia 2.16 +0.162% 24
Rwanda Rwanda 0.884 0% 45
Saudi Arabia Saudi Arabia 0.0166 +3.75% 145
Sudan Sudan 2.3 0% 21
Senegal Senegal 0.338 0% 83
Singapore Singapore 0.0017 0% 165
Solomon Islands Solomon Islands 0.0117 0% 148
Sierra Leone Sierra Leone 0.546 0% 63
El Salvador El Salvador 0.0493 +0.203% 130
Somalia Somalia 1.56 0% 32
São Tomé & Príncipe São Tomé & Príncipe 0.0105 0% 150
Suriname Suriname 0.0078 0% 154
Slovakia Slovakia 0.249 +0.161% 95
Slovenia Slovenia 0.173 -0.115% 108
Sweden Sweden 0.351 -0.0569% 81
Eswatini Eswatini 0.0947 0% 116
Seychelles Seychelles 0.0005 0% 171
Syria Syria 0.0073 0% 155
Turks & Caicos Islands Turks & Caicos Islands 0.0002 0% 174
Chad Chad 0.729 0% 55
Togo Togo 0.54 0% 64
Thailand Thailand 0.757 0% 54
Tajikistan Tajikistan 0.0949 +1.39% 115
Turkmenistan Turkmenistan 0.0759 -1.04% 120
Timor-Leste Timor-Leste 0.0061 0% 156
Tonga Tonga 0.0003 0% 173
Trinidad & Tobago Trinidad & Tobago 0.0047 0% 158
Tunisia Tunisia 0.289 -0.0346% 88
Turkey Turkey 0.931 -2.11% 43
Tanzania Tanzania 5.55 0% 8
Uganda Uganda 3.89 0% 10
Ukraine Ukraine 0.799 -0.287% 50
Uruguay Uruguay 0.119 +0.084% 111
United States United States 9.17 +0.581% 6
Uzbekistan Uzbekistan 0.278 +16.2% 90
St. Vincent & Grenadines St. Vincent & Grenadines 0.0006 0% 170
Venezuela Venezuela 0.0628 +1.95% 124
British Virgin Islands British Virgin Islands 0.0001 0% 175
U.S. Virgin Islands U.S. Virgin Islands 0 176
Vietnam Vietnam 0.872 +2.05% 46
Vanuatu Vanuatu 0.0078 0% 154
Samoa Samoa 0.0061 0% 156
Yemen Yemen 0.0185 0% 143
South Africa South Africa 2.04 -0.765% 27
Zambia Zambia 1.89 0% 28
Zimbabwe Zimbabwe 2.82 +0.0354% 18

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CH4.BU.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CH4.BU.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))