Methane (CH4) emissions from Agriculture (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0015 0% 195
Afghanistan Afghanistan 12.2 +1.83% 56
Angola Angola 7.4 +1.16% 75
Albania Albania 1.23 -8.94% 130
United Arab Emirates United Arab Emirates 1.64 +2% 120
Argentina Argentina 103 -1.62% 8
Armenia Armenia 1.39 +0.123% 127
American Samoa American Samoa 0.004 0% 188
Antigua & Barbuda Antigua & Barbuda 0.0102 -8.93% 181
Australia Australia 75.5 +3.04% 12
Austria Austria 5.3 +0.0359% 88
Azerbaijan Azerbaijan 7.42 -0.788% 74
Burundi Burundi 2.15 -0.413% 113
Belgium Belgium 6.84 +0.37% 79
Benin Benin 3.74 +2.96% 102
Burkina Faso Burkina Faso 15.2 +2.16% 53
Bangladesh Bangladesh 106 +1.12% 7
Bulgaria Bulgaria 2.03 -0.256% 117
Bahrain Bahrain 0.0279 +2.57% 169
Bahamas Bahamas 0.0062 +1.64% 185
Bosnia & Herzegovina Bosnia & Herzegovina 1.15 -4.87% 132
Belarus Belarus 12.1 +0.0552% 57
Belize Belize 0.216 -0.139% 156
Bermuda Bermuda 0.0021 -4.55% 192
Bolivia Bolivia 21.3 +2.43% 43
Brazil Brazil 471 -0.553% 3
Barbados Barbados 0.0313 +1.29% 168
Brunei Brunei 0.0263 -0.755% 172
Bhutan Bhutan 0.386 -5.58% 150
Botswana Botswana 1.45 -2.1% 125
Central African Republic Central African Republic 6.47 +1.58% 82
Canada Canada 30.7 -1.6% 31
Switzerland Switzerland 4.08 +0.0933% 97
Chile Chile 6.77 +0.31% 80
China China 631 -0.793% 1
Côte d’Ivoire Côte d’Ivoire 3.76 +2.41% 101
Cameroon Cameroon 7.8 +0.817% 71
Congo - Kinshasa Congo - Kinshasa 9.73 +2.04% 62
Congo - Brazzaville Congo - Brazzaville 0.473 -0.148% 145
Colombia Colombia 59.7 +1.02% 18
Comoros Comoros 0.0725 0% 162
Cape Verde Cape Verde 0.0711 +1.57% 163
Costa Rica Costa Rica 3.42 -0.985% 104
Cuba Cuba 6.93 -1.2% 78
Cayman Islands Cayman Islands 0.0043 0% 187
Cyprus Cyprus 0.467 +2.73% 146
Czechia Czechia 5.11 +0.0333% 92
Germany Germany 34.5 -0.00261% 27
Djibouti Djibouti 0.51 -0.176% 142
Dominica Dominica 0.0272 0% 170
Denmark Denmark 6.47 +0.0201% 83
Dominican Republic Dominican Republic 7.58 -0.144% 72
Algeria Algeria 8.75 +1.2% 69
Ecuador Ecuador 9.61 -2.13% 63
Egypt Egypt 13.6 -3.74% 54
Eritrea Eritrea 3.14 +0.419% 106
Spain Spain 28.1 -0.46% 32
Estonia Estonia 0.863 -0.116% 135
Ethiopia Ethiopia 82.1 +2.31% 10
Finland Finland 2.36 +0.0297% 111
Fiji Fiji 0.332 -0.983% 152
France France 43 -0.128% 24
Faroe Islands Faroe Islands 0.0206 0% 175
Micronesia (Federated States of) Micronesia (Federated States of) 0.0321 +1.26% 167
Gabon Gabon 0.111 +0.455% 159
United Kingdom United Kingdom 31.9 -0.883% 28
Georgia Georgia 2.21 +0.145% 112
Ghana Ghana 5.8 +3.19% 86
Guinea Guinea 15.4 +3.52% 51
Gambia Gambia 0.542 -2.61% 141
Guinea-Bissau Guinea-Bissau 1.36 +0.568% 128
Equatorial Guinea Equatorial Guinea 0.0148 +0.68% 179
Greece Greece 3.88 -2.41% 99
Grenada Grenada 0.0105 0% 180
Greenland Greenland 0.0045 +2.27% 186
Guatemala Guatemala 7.48 +0.0335% 73
Guam Guam 0.0028 0% 190
Guyana Guyana 1.42 +0.766% 126
Hong Kong SAR China Hong Kong SAR China 0.015 0% 178
Honduras Honduras 5.17 +0.0135% 90
Croatia Croatia 1.55 -1.72% 122
Haiti Haiti 3.17 -0.456% 105
Hungary Hungary 3.54 -0.431% 103
Indonesia Indonesia 114 -0.968% 6
India India 568 +0.0934% 2
Ireland Ireland 15.7 -0.354% 50
Iran Iran 23.4 +2.32% 40
Iraq Iraq 4.03 +2.94% 98
Iceland Iceland 0.277 -2.33% 153
Israel Israel 2.08 +0.0624% 115
Italy Italy 21.8 -0.189% 41
Jamaica Jamaica 0.432 -0.667% 148
Jordan Jordan 0.756 -0.211% 137
Japan Japan 44.1 -1.86% 23
Kazakhstan Kazakhstan 27.8 +1.34% 33
Kenya Kenya 54.5 +4.97% 20
Kyrgyzstan Kyrgyzstan 5.86 +0.202% 85
Cambodia Cambodia 24 +2.23% 39
Kiribati Kiribati 0.0032 0% 189
St. Kitts & Nevis St. Kitts & Nevis 0.018 +13.2% 176
South Korea South Korea 19.8 -2.26% 46
Kuwait Kuwait 0.254 +1.76% 155
Laos Laos 10.2 +1.34% 61
Lebanon Lebanon 0.391 +0.154% 149
Liberia Liberia 0.259 -1.59% 154
Libya Libya 1.94 +1.01% 118
St. Lucia St. Lucia 0.0227 -0.439% 174
Sri Lanka Sri Lanka 10.5 +1.17% 58
Lesotho Lesotho 0.641 -8.32% 138
Lithuania Lithuania 2.08 -0.168% 116
Luxembourg Luxembourg 0.485 +0.0206% 143
Latvia Latvia 1.16 +0.0947% 131
Macao SAR China Macao SAR China 0.002 0% 193
Morocco Morocco 8.96 +0.243% 67
Moldova Moldova 0.941 +1.63% 133
Madagascar Madagascar 16 -1.72% 49
Maldives Maldives 0 197
Mexico Mexico 87.3 +0.432% 9
Marshall Islands Marshall Islands 0 197
North Macedonia North Macedonia 0.585 -7.47% 139
Mali Mali 25.6 +2.23% 36
Malta Malta 0.0513 -0.388% 166
Myanmar (Burma) Myanmar (Burma) 60.9 -5.6% 17
Mongolia Mongolia 20.1 +2.57% 44
Northern Mariana Islands Northern Mariana Islands 0 197
Mozambique Mozambique 4.5 +3.15% 96
Mauritania Mauritania 7.15 +1.52% 77
Mauritius Mauritius 0.0236 -2.88% 173
Malawi Malawi 5.28 +5.99% 89
Malaysia Malaysia 6.13 +0.213% 84
Namibia Namibia 4.88 -0.581% 94
New Caledonia New Caledonia 0.133 -0.82% 158
Niger Niger 25.8 +4.06% 35
Nigeria Nigeria 59.6 +1.09% 19
Nicaragua Nicaragua 9.25 +0.00865% 65
Netherlands Netherlands 12.3 -0.0882% 55
Norway Norway 2.78 -0.23% 108
Nepal Nepal 27.3 +0.37% 34
Nauru Nauru 0.0003 0% 196
New Zealand New Zealand 30.8 -1.18% 30
Oman Oman 1.33 +1.91% 129
Pakistan Pakistan 210 +5.41% 5
Panama Panama 3.09 -0.37% 107
Peru Peru 15.4 +0.396% 52
Philippines Philippines 48.7 -0.747% 22
Palau Palau 0 197
Papua New Guinea Papua New Guinea 0.448 +0.516% 147
Poland Poland 19.9 -0.011% 45
Puerto Rico Puerto Rico 0.483 -0.392% 144
North Korea North Korea 5.08 +0.185% 93
Portugal Portugal 5.16 +0.667% 91
Paraguay Paraguay 24.1 -0.443% 38
French Polynesia French Polynesia 0.0266 0% 171
Qatar Qatar 0.384 +0.445% 151
Romania Romania 8.76 +0.141% 68
Russia Russia 61.3 -0.913% 16
Rwanda Rwanda 1.76 -0.732% 119
Saudi Arabia Saudi Arabia 9.31 +10.3% 64
Sudan Sudan 67.1 +0.891% 14
Senegal Senegal 9.17 +2.06% 66
Singapore Singapore 0.0062 -8.82% 185
Solomon Islands Solomon Islands 0.057 0% 165
Sierra Leone Sierra Leone 2.59 +0.845% 109
El Salvador El Salvador 1.63 +0.104% 121
Somalia Somalia 17.5 -0.199% 48
São Tomé & Príncipe São Tomé & Príncipe 0.0083 +2.47% 182
Suriname Suriname 0.545 -0.11% 140
Slovakia Slovakia 1.49 -0.907% 124
Slovenia Slovenia 1.53 -1.02% 123
Sweden Sweden 3.86 -0.116% 100
Eswatini Eswatini 0.904 +0.233% 134
Seychelles Seychelles 0.0025 +4.17% 191
Syria Syria 4.51 +3.61% 95
Chad Chad 65.4 +4.98% 15
Togo Togo 2.13 +3.8% 114
Thailand Thailand 77.2 -3.45% 11
Tajikistan Tajikistan 7.37 +0.635% 76
Turkmenistan Turkmenistan 10.5 +0.37% 59
Timor-Leste Timor-Leste 0.816 +1.62% 136
Tonga Tonga 0.0595 +0.337% 164
Trinidad & Tobago Trinidad & Tobago 0.084 +1.08% 161
Tunisia Tunisia 2.48 -0.201% 110
Turkey Turkey 49 +1.34% 21
Tuvalu Tuvalu 0.0017 0% 194
Tanzania Tanzania 37.5 +3.43% 25
Uganda Uganda 19.7 +0.606% 47
Ukraine Ukraine 10.2 -1.63% 60
Uruguay Uruguay 21.3 -3.08% 42
United States United States 255 -0.283% 4
Uzbekistan Uzbekistan 36.3 +0.484% 26
St. Vincent & Grenadines St. Vincent & Grenadines 0.0073 -3.95% 183
Venezuela Venezuela 31.8 +0.203% 29
British Virgin Islands British Virgin Islands 0.0069 +1.47% 184
U.S. Virgin Islands U.S. Virgin Islands 0.0169 +0.595% 177
Vietnam Vietnam 73.7 +0.645% 13
Vanuatu Vanuatu 0.209 +0.048% 157
Samoa Samoa 0.0984 -4.37% 160
Yemen Yemen 5.65 +2.05% 87
South Africa South Africa 25.6 -0.573% 37
Zambia Zambia 6.49 +3.85% 81
Zimbabwe Zimbabwe 8.46 +0.633% 70

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CH4.AG.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CH4.AG.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))