Merchandise trade (% of GDP)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 46.1 -11.4% 122
Angola Angola 67.1 +3.17% 63
Albania Albania 50.1 -9.75% 111
Andorra Andorra 56.7 -4.47% 89
United Arab Emirates United Arab Emirates 213 +5.04% 3
Argentina Argentina 22.2 +2.05% 184
Armenia Armenia 117 +32.2% 17
Antigua & Barbuda Antigua & Barbuda 37.7 -13.6% 144
Australia Australia 36.4 -4.53% 147
Austria Austria 81.5 -7.38% 46
Azerbaijan Azerbaijan 64.1 -9.34% 68
Burundi Burundi 53 -0.943% 99
Belgium Belgium 158 -9.51% 8
Benin Benin 41.9 -11.4% 137
Burkina Faso Burkina Faso 52.5 +3.04% 102
Bangladesh Bangladesh 25.6 +0.698% 179
Bulgaria Bulgaria 89.3 -9.98% 34
Bahrain Bahrain 81.8 -5.95% 45
Bahamas Bahamas 30.8 -4.57% 165
Bosnia & Herzegovina Bosnia & Herzegovina 87.3 -2.06% 37
Belarus Belarus 113 -1.02% 21
Belize Belize 53 -11.1% 100
Bermuda Bermuda 14.9 +6.42% 189
Bolivia Bolivia 38.3 -22.9% 142
Brazil Brazil 28.2 +4.37% 172
Barbados Barbados 36.5 -5.11% 145
Brunei Brunei 124 +0.0701% 14
Bhutan Bhutan 68.1 +5.3% 59
Botswana Botswana 57.6 -8.75% 88
Central African Republic Central African Republic 19.3 -26.1% 185
Canada Canada 50.9 -3% 105
Switzerland Switzerland 87.1 -0.795% 38
Chile Chile 55.8 +4.1% 93
China China 32.9 +1.22% 161
Côte d’Ivoire Côte d’Ivoire 46.7 -0.029% 119
Cameroon Cameroon 28.3 +6.74% 171
Congo - Kinshasa Congo - Kinshasa 79.9 +0.479% 48
Congo - Brazzaville Congo - Brazzaville 63.6 -8.19% 70
Colombia Colombia 27.2 -11.5% 174
Comoros Comoros 26.5 -2.48% 177
Cape Verde Cape Verde 67.8 -8.79% 61
Costa Rica Costa Rica 50.5 +1.48% 109
Cyprus Cyprus 48.3 -14.5% 116
Czechia Czechia 144 +1.04% 10
Germany Germany 66.7 -4.79% 65
Djibouti Djibouti 201 -21.9% 4
Dominica Dominica 35.3 -26.9% 153
Denmark Denmark 59.4 -3.6% 82
Dominican Republic Dominican Republic 35.1 +1.32% 155
Algeria Algeria 36.3 -8.77% 149
Ecuador Ecuador 50.6 -1.15% 108
Egypt Egypt 33 +4.36% 160
Eritrea Eritrea 28.6 -0.502% 169
Spain Spain 52 -5.56% 103
Estonia Estonia 96.3 -6.4% 31
Ethiopia Ethiopia 12.4 -1.31% 190
Finland Finland 52.8 -5.92% 101
Fiji Fiji 73.9 -3.49% 55
France France 44 -6.76% 129
Micronesia (Federated States of) Micronesia (Federated States of) 101 +10.6% 26
Gabon Gabon 81.9 -2.82% 44
United Kingdom United Kingdom 36.5 -6.66% 146
Georgia Georgia 69.4 -1.55% 57
Ghana Ghana 43.7 +14.5% 131
Guinea Guinea 63 +0.707% 73
Gambia Gambia 61.1 -3.37% 78
Guinea-Bissau Guinea-Bissau 34.6 +0.625% 156
Equatorial Guinea Equatorial Guinea 58 -9.56% 86
Greece Greece 56.6 -5.03% 90
Grenada Grenada 35.8 -27.7% 151
Guatemala Guatemala 41.6 -2.47% 138
Guyana Guyana 105 -10.2% 24
Hong Kong SAR China Hong Kong SAR China 332 +2.91% 1
Honduras Honduras 77.4 -7.4% 51
Croatia Croatia 77.4 -4.51% 52
Haiti Haiti 15.2 -29.6% 188
Hungary Hungary 137 -7.46% 12
Indonesia Indonesia 35.7 +1.8% 152
India India 29.2 -3.75% 168
Ireland Ireland 66.3 +1.78% 66
Iran Iran 39.9 -1.13% 140
Iraq Iraq 67.1 +9.32% 64
Iceland Iceland 50 -3.15% 112
Israel Israel 28.5 -6.08% 170
Italy Italy 54.4 -4.86% 97
Jamaica Jamaica 46.4 -6.05% 120
Jordan Jordan 75.1 +0.194% 54
Japan Japan 36 +0.924% 150
Kazakhstan Kazakhstan 49.1 -7.64% 115
Kenya Kenya 22.8 -4.5% 183
Kyrgyzstan Kyrgyzstan 91.8 -12.4% 33
Cambodia Cambodia 119 +5.66% 16
Kiribati Kiribati 117 +2.92% 18
St. Kitts & Nevis St. Kitts & Nevis 30.6 -9.79% 166
Kuwait Kuwait 71.2 -3.05% 56
Laos Laos 109 +8.25% 23
Lebanon Lebanon 81.2 -26.8% 47
Liberia Liberia 63.8 -7.7% 69
Libya Libya 101 -11% 27
St. Lucia St. Lucia 43.4 +7.59% 133
Sri Lanka Sri Lanka 31.9 -6.89% 163
Lesotho Lesotho 128 +6.15% 13
Lithuania Lithuania 99.5 -13.2% 29
Luxembourg Luxembourg 44.3 -10.8% 128
Latvia Latvia 102 -13.6% 25
Macao SAR China Macao SAR China 35.2 -15.9% 154
Morocco Morocco 77.8 +1.9% 49
Moldova Moldova 69.3 -8.93% 58
Madagascar Madagascar 42.6 -17.7% 136
Maldives Maldives 57.6 -3.05% 87
Mexico Mexico 68.1 +0.534% 60
Marshall Islands Marshall Islands 55.6 -12% 94
North Macedonia North Macedonia 122 -8.52% 15
Mali Mali 47.2 -8.01% 118
Malta Malta 51.3 -3.95% 104
Myanmar (Burma) Myanmar (Burma) 36.3 -22.3% 148
Montenegro Montenegro 59.2 -8.16% 83
Mongolia Mongolia 116 -3.39% 19
Mozambique Mozambique 77.7 -11.3% 50
Mauritania Mauritania 83.8 +0.524% 41
Mauritius Mauritius 61.6 +1.32% 77
Malawi Malawi 38.3 +18.4% 143
Malaysia Malaysia 149 +3.26% 9
Namibia Namibia 113 +10.2% 22
Niger Niger 23 -9.77% 182
Nigeria Nigeria 50 +73.8% 113
Nicaragua Nicaragua 96.4 -6.15% 30
Netherlands Netherlands 141 -8.38% 11
Norway Norway 54.9 -1.6% 96
Nepal Nepal 33.8 +5.5% 158
Nauru Nauru 60.5 -15.2% 80
New Zealand New Zealand 34.3 -4.14% 157
Oman Oman 99.6 +7.82% 28
Pakistan Pakistan 23.8 +2.31% 181
Panama Panama 45.5 -25.6% 124
Peru Peru 43.4 -1.15% 135
Philippines Philippines 44.9 -5.35% 127
Palau Palau 45 -37.5% 126
Papua New Guinea Papua New Guinea 53.4 -9.77% 98
Poland Poland 83 -10.3% 42
Portugal Portugal 65.4 -4.04% 67
Paraguay Paraguay 63.2 -2.69% 72
Qatar Qatar 59.7 -1.6% 81
Romania Romania 61.8 -6.71% 76
Russia Russia 32.7 -6.76% 162
Rwanda Rwanda 56.1 +27.2% 92
Saudi Arabia Saudi Arabia 43.4 +0.416% 132
Sudan Sudan 17.2 -44.1% 187
Senegal Senegal 56.5 +0.769% 91
Singapore Singapore 176 -1.03% 5
Solomon Islands Solomon Islands 77 +12.4% 53
Sierra Leone Sierra Leone 43.4 -14.4% 134
El Salvador El Salvador 63.4 -3.08% 71
Somalia Somalia 43.8 -8.95% 130
Serbia Serbia 82.9 -4.74% 43
South Sudan South Sudan 31.9 -33.3% 164
São Tomé & Príncipe São Tomé & Príncipe 25 -18.4% 180
Suriname Suriname 62.4 -46.2% 75
Slovakia Slovakia 162 -6.22% 7
Slovenia Slovenia 225 +7.62% 2
Sweden Sweden 62.7 -6.01% 74
Eswatini Eswatini 89.3 -0.532% 35
Sint Maarten Sint Maarten 89.2 +4.55% 36
Seychelles Seychelles 93.2 +2.35% 32
Syria Syria 45 -1.17% 125
Turks & Caicos Islands Turks & Caicos Islands 26.1 -4.43% 178
Chad Chad 33.5 -4.48% 159
Togo Togo 50.2 -2.37% 110
Thailand Thailand 115 +3.77% 20
Tajikistan Tajikistan 61 -10.4% 79
Turkmenistan Turkmenistan 26.8 -11.6% 176
Timor-Leste Timor-Leste 55.5 -3.56% 95
Tonga Tonga 50.7 -8.59% 107
Trinidad & Tobago Trinidad & Tobago 67.1 +0.559% 62
Tunisia Tunisia 86.1 -8.77% 39
Turkey Turkey 45.8 -17.1% 123
Tanzania Tanzania 29.3 +10.2% 167
Uganda Uganda 40.8 +10.1% 139
Ukraine Ukraine 58 +5.59% 85
Uruguay Uruguay 28.1 +0.912% 173
United States United States 18.6 -0.654% 186
Uzbekistan Uzbekistan 47.8 -10.4% 117
St. Vincent & Grenadines St. Vincent & Grenadines 46.3 -0.0718% 121
Vietnam Vietnam 164 +4.84% 6
Vanuatu Vanuatu 50.8 +7.36% 106
Samoa Samoa 49.7 -8.72% 114
Yemen Yemen 27.1 -14.4% 175
South Africa South Africa 58.3 -8.06% 84
Zambia Zambia 85.1 +14.1% 40
Zimbabwe Zimbabwe 38.3 -17.9% 141

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TG.VAL.TOTL.GD.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TG.VAL.TOTL.GD.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))