Merchandise imports (current US$)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 1,602,000,000 +15.1% 168
Afghanistan Afghanistan 8,638,000,000 +7.01% 120
Angola Angola 14,722,000,000 -6.21% 98
Albania Albania 9,612,000,000 +10.6% 113
Andorra Andorra 2,033,000,000 +1.9% 161
United Arab Emirates United Arab Emirates 538,753,000,000 +14.5% 14
Argentina Argentina 60,822,000,000 -17.5% 53
Armenia Armenia 17,067,000,000 +33.8% 90
American Samoa American Samoa 714,000,000 +12.3% 184
Antigua & Barbuda Antigua & Barbuda 816,000,000 -3.32% 183
Australia Australia 296,369,000,000 +3.12% 24
Austria Austria 210,865,000,000 -6.8% 30
Azerbaijan Azerbaijan 21,053,000,000 +21.8% 82
Burundi Burundi 994,000,000 -17% 178
Belgium Belgium 512,661,000,000 -7.81% 15
Benin Benin 5,230,000,000 -0.419% 134
Burkina Faso Burkina Faso 6,732,000,000 +14.2% 129
Bangladesh Bangladesh 67,880,000,000 +1.52% 51
Bulgaria Bulgaria 53,817,000,000 +0.341% 57
Bahrain Bahrain 15,610,000,000 +1.58% 96
Bahamas Bahamas 4,271,000,000 +1.98% 142
Bosnia & Herzegovina Bosnia & Herzegovina 15,847,000,000 +3.2% 95
Belarus Belarus 45,700,000,000 +6.05% 61
Belize Belize 1,403,000,000 +4.62% 172
Bermuda Bermuda 1,271,000,000 +7.71% 174
Bolivia Bolivia 9,624,000,000 -16.3% 112
Brazil Brazil 277,954,000,000 +9.99% 26
Barbados Barbados 2,154,000,000 +1.41% 159
Brunei Brunei 7,887,000,000 +5.38% 124
Bhutan Bhutan 1,471,000,000 +12% 170
Botswana Botswana 7,055,000,000 +8.44% 127
Central African Republic Central African Republic 364,000,000 -28.1% 194
Canada Canada 573,294,000,000 +0.443% 13
Switzerland Switzerland 369,424,000,000 +1.04% 20
Chile Chile 84,154,000,000 -1.35% 46
China China 2,587,234,000,000 +1.18% 2
Côte d’Ivoire Côte d’Ivoire 19,397,000,000 +2.95% 84
Cameroon Cameroon 8,500,000,000 +4.73% 123
Congo - Kinshasa Congo - Kinshasa 26,500,000,000 +3.8% 75
Congo - Brazzaville Congo - Brazzaville 3,100,000,000 -3.37% 152
Colombia Colombia 64,105,000,000 +2.08% 52
Comoros Comoros 377,000,000 +5.31% 193
Cape Verde Cape Verde 1,802,000,000 -1.69% 165
Costa Rica Costa Rica 26,484,000,000 +10.2% 76
Cuba Cuba 8,784,000,000 -2.11% 118
Curaçao Curaçao 2,107,000,000 +15.1% 160
Cayman Islands Cayman Islands 1,595,000,000 -12.9% 169
Cyprus Cyprus 13,169,000,000 -6.83% 103
Czechia Czechia 232,446,000,000 +0.232% 28
Germany Germany 1,424,545,000,000 -2.93% 3
Djibouti Djibouti 4,385,000,000 -17.2% 141
Dominica Dominica 233,000,000 -22.8% 198
Denmark Denmark 121,875,000,000 +0.936% 37
Dominican Republic Dominican Republic 29,764,000,000 +3.26% 70
Algeria Algeria 46,100,000,000 +7.3% 59
Ecuador Ecuador 29,428,000,000 -4.77% 71
Egypt Egypt 86,333,000,000 +3.77% 43
Eritrea Eritrea 571,000,000 +14.7% 185
Spain Spain 471,912,000,000 +0.433% 16
Estonia Estonia 22,350,000,000 -2.21% 80
Ethiopia Ethiopia 21,489,000,000 +25.9% 81
Finland Finland 80,379,000,000 -3.28% 47
Fiji Fiji 3,154,000,000 +1.74% 150
France France 750,230,000,000 -4.81% 6
Micronesia (Federated States of) Micronesia (Federated States of) 292,000,000 -2.99% 196
Gabon Gabon 4,000,000,000 -5.15% 146
United Kingdom United Kingdom 815,973,000,000 +3.09% 4
Georgia Georgia 16,875,000,000 +8.15% 91
Ghana Ghana 16,199,000,000 +15.6% 92
Guinea Guinea 5,917,000,000 +22.1% 133
Gambia Gambia 1,264,000,000 +3.02% 175
Guinea-Bissau Guinea-Bissau 487,000,000 +2.74% 189
Equatorial Guinea Equatorial Guinea 2,700,000,000 +11% 154
Greece Greece 91,428,000,000 +1.77% 42
Grenada Grenada 448,000,000 -26.4% 192
Greenland Greenland 932,000,000 +2.98% 180
Guatemala Guatemala 32,488,000,000 +7.16% 69
Guam Guam 887,000,000 -32.2% 181
Guyana Guyana 6,731,000,000 +1.43% 130
Hong Kong SAR China Hong Kong SAR China 704,141,000,000 +7.72% 8
Honduras Honduras 17,671,000,000 +1.84% 86
Croatia Croatia 45,721,000,000 +5.22% 60
Haiti Haiti 3,114,000,000 -7.82% 151
Hungary Hungary 148,974,000,000 -4.76% 32
Indonesia Indonesia 233,659,000,000 +5.31% 27
India India 701,596,000,000 +4.11% 9
Ireland Ireland 142,457,000,000 -5.72% 33
Iran Iran 68,554,000,000 +3.78% 50
Iraq Iraq 85,923,000,000 +30.5% 44
Iceland Iceland 9,811,000,000 +3.71% 111
Israel Israel 91,538,000,000 -0.369% 41
Italy Italy 615,194,000,000 -3.86% 12
Jamaica Jamaica 7,321,000,000 -3.57% 125
Jordan Jordan 26,792,000,000 +4.02% 73
Japan Japan 742,608,000,000 -5.5% 7
Kazakhstan Kazakhstan 59,133,000,000 -2.51% 54
Kenya Kenya 20,118,000,000 +8.25% 83
Kyrgyzstan Kyrgyzstan 12,214,000,000 -2.43% 105
Cambodia Cambodia 28,699,000,000 +17.7% 72
Kiribati Kiribati 335,000,000 +8.77% 195
St. Kitts & Nevis St. Kitts & Nevis 292,000,000 -12.3% 196
South Korea South Korea 631,767,000,000 -1.68% 11
Kuwait Kuwait 38,242,000,000 +2.01% 66
Laos Laos 8,624,000,000 +12.7% 122
Lebanon Lebanon 17,309,000,000 -4.5% 88
Liberia Liberia 1,728,000,000 -9.67% 166
Libya Libya 17,566,000,000 -3.46% 87
St. Lucia St. Lucia 1,028,000,000 +14.2% 177
Sri Lanka Sri Lanka 18,842,000,000 +12.1% 85
Lesotho Lesotho 1,935,000,000 +12.2% 164
Lithuania Lithuania 44,748,000,000 -7.72% 62
Luxembourg Luxembourg 25,081,000,000 -4.62% 78
Latvia Latvia 23,706,000,000 -13.4% 79
Macao SAR China Macao SAR China 16,011,000,000 -8.73% 93
Morocco Morocco 75,116,000,000 +9.45% 48
Moldova Moldova 9,065,000,000 +4.5% 116
Madagascar Madagascar 4,833,000,000 -0.617% 135
Maldives Maldives 3,637,000,000 +4% 147
Mexico Mexico 643,974,000,000 +3.62% 10
Marshall Islands Marshall Islands 98,000,000 -5.77% 201
North Macedonia North Macedonia 11,966,000,000 -0.747% 106
Mali Mali 7,072,000,000 +1.22% 126
Malta Malta 8,713,000,000 +3.7% 119
Myanmar (Burma) Myanmar (Burma) 13,570,000,000 -17.5% 101
Montenegro Montenegro 4,141,000,000 +0.461% 144
Mongolia Mongolia 11,613,000,000 +25.5% 108
Northern Mariana Islands Northern Mariana Islands 546,000,000 -2.15% 186
Mozambique Mozambique 9,210,000,000 -8.74% 115
Mauritania Mauritania 4,798,000,000 -0.415% 138
Mauritius Mauritius 6,814,000,000 +8.62% 128
Malawi Malawi 3,264,000,000 +3.92% 149
Malaysia Malaysia 300,355,000,000 +13.1% 23
Namibia Namibia 8,630,000,000 +19.2% 121
New Caledonia New Caledonia 2,303,000,000 -27.9% 156
Niger Niger 2,742,000,000 -15.9% 153
Nigeria Nigeria 40,907,000,000 -17.2% 65
Nicaragua Nicaragua 11,468,000,000 +5.06% 109
Netherlands Netherlands 811,633,000,000 -3.67% 5
Norway Norway 97,392,000,000 +2.01% 40
Nepal Nepal 13,273,000,000 +10.5% 102
Nauru Nauru 63,000,000 -10% 202
New Zealand New Zealand 46,892,000,000 -6.14% 58
Oman Oman 43,464,000,000 +12.1% 63
Pakistan Pakistan 56,468,000,000 +12.6% 55
Panama Panama 26,611,000,000 -22.4% 74
Peru Peru 55,165,000,000 +5.29% 56
Philippines Philippines 134,301,000,000 +0.37% 35
Palau Palau 138,000,000 -29.6% 200
Papua New Guinea Papua New Guinea 4,109,000,000 -24% 145
Poland Poland 379,314,000,000 +2.5% 18
North Korea North Korea 2,374,000,000 -2.7% 155
Portugal Portugal 115,951,000,000 +2% 38
Paraguay Paraguay 17,210,000,000 +6.86% 89
French Polynesia French Polynesia 2,174,000,000 -5.35% 158
Qatar Qatar 35,802,000,000 +13.9% 67
Romania Romania 136,420,000,000 +3.4% 34
Russia Russia 294,536,000,000 -2.75% 25
Rwanda Rwanda 4,800,000,000 +24.4% 137
Saudi Arabia Saudi Arabia 232,028,000,000 +12.1% 29
Sudan Sudan 4,820,000,000 -36% 136
Senegal Senegal 11,807,000,000 -0.606% 107
Singapore Singapore 458,686,000,000 +8.32% 17
Solomon Islands Solomon Islands 868,000,000 +22.8% 182
Sierra Leone Sierra Leone 2,011,000,000 +4.63% 162
El Salvador El Salvador 15,973,000,000 +2.08% 94
Somalia Somalia 4,200,000,000 -3.51% 143
Serbia Serbia 42,245,000,000 +6.04% 64
South Sudan South Sudan 1,184,000,000 +1.98% 176
São Tomé & Príncipe São Tomé & Príncipe 165,000,000 -10.3% 199
Suriname Suriname 1,648,000,000 -2.89% 167
Slovakia Slovakia 113,511,000,000 -0.0115% 39
Slovenia Slovenia 84,254,000,000 +17.6% 45
Sweden Sweden 187,958,000,000 -2.68% 31
Eswatini Eswatini 1,950,000,000 -4.36% 163
Sint Maarten Sint Maarten 1,275,000,000 +10.1% 173
Seychelles Seychelles 1,450,000,000 -0.0689% 171
Syria Syria 6,240,000,000 +6.3% 132
Turks & Caicos Islands Turks & Caicos Islands 451,000,000 +1.81% 191
Chad Chad 2,200,000,000 +5.36% 157
Togo Togo 3,472,000,000 +6.54% 148
Thailand Thailand 306,810,000,000 +6.34% 22
Tajikistan Tajikistan 6,684,000,000 +13.7% 131
Turkmenistan Turkmenistan 4,637,000,000 +15.3% 139
Timor-Leste Timor-Leste 958,000,000 +5.97% 179
Tonga Tonga 266,000,000 -2.21% 197
Trinidad & Tobago Trinidad & Tobago 9,043,000,000 -1.23% 117
Tunisia Tunisia 26,027,000,000 +2.13% 77
Turkey Turkey 344,020,000,000 -4.96% 21
Tanzania Tanzania 14,302,000,000 +4.17% 99
Uganda Uganda 14,200,000,000 +20.5% 100
Ukraine Ukraine 70,062,000,000 +10.3% 49
Uruguay Uruguay 12,523,000,000 +0.296% 104
United States United States 3,359,319,000,000 +6.03% 1
Uzbekistan Uzbekistan 35,238,000,000 -0.947% 68
St. Vincent & Grenadines St. Vincent & Grenadines 484,000,000 +6.14% 190
Venezuela Venezuela 15,090,000,000 +37.9% 97
Vietnam Vietnam 379,027,000,000 +16.3% 19
Vanuatu Vanuatu 529,000,000 +11.8% 187
Samoa Samoa 489,000,000 +4.49% 188
Yemen Yemen 4,552,000,000 -10.3% 140
South Africa South Africa 123,469,000,000 -5.57% 36
Zambia Zambia 11,194,000,000 +10.6% 110
Zimbabwe Zimbabwe 9,499,000,000 +3.09% 114

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.VAL.MRCH.CD.WT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.VAL.MRCH.CD.WT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))