Medium and high-tech manufacturing value added (% manufacturing value added)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 8.46 0% 118
Angola Angola 3.56 0.00000% 140
Albania Albania 5.23 +0.00193% 135
United Arab Emirates United Arab Emirates 39.2 0.00000% 33
Argentina Argentina 27.7 +1.38% 59
Armenia Armenia 6.45 0.00000% 129
Australia Australia 29.1 +0.941% 52
Austria Austria 46 +0.21% 18
Azerbaijan Azerbaijan 18 +12.5% 89
Burundi Burundi 2.79 0% 143
Belgium Belgium 51.2 +1.21% 12
Bangladesh Bangladesh 7.81 0% 121
Bulgaria Bulgaria 36.7 +5.59% 39
Bahrain Bahrain 24.6 0% 69
Bahamas Bahamas 27.8 0% 58
Bosnia & Herzegovina Bosnia & Herzegovina 16.9 +0.136% 92
Belarus Belarus 19.8 0.00000% 81
Belize Belize 18.5 0% 86
Bermuda Bermuda 7.71 0% 122
Bolivia Bolivia 11.9 0% 106
Brazil Brazil 31.3 0.00000% 50
Barbados Barbados 38.1 0% 36
Brunei Brunei 3.32 0% 141
Botswana Botswana 28.7 0.00000% 55
Central African Republic Central African Republic 9.25 0% 115
Canada Canada 31.9 +2.38% 48
Switzerland Switzerland 71.4 +4.23% 3
Chile Chile 20.4 0% 79
China China 41.5 0.00000% 26
Côte d’Ivoire Côte d’Ivoire 15 0% 96
Cameroon Cameroon 7.61 0% 123
Congo - Brazzaville Congo - Brazzaville 2.42 0% 146
Colombia Colombia 24.2 +0.433% 71
Cape Verde Cape Verde 27.1 0% 62
Costa Rica Costa Rica 14.2 0.00000% 99
Cuba Cuba 16.2 0% 93
Cyprus Cyprus 27.7 +30.1% 60
Czechia Czechia 49.9 +1.36% 15
Germany Germany 57.9 +1.04% 6
Denmark Denmark 55.1 +2.63% 7
Algeria Algeria 2.69 0% 144
Ecuador Ecuador 13.9 +0.83% 101
Egypt Egypt 18.8 0.00000% 84
Eritrea Eritrea 10.2 0% 112
Spain Spain 37.8 +3.71% 37
Estonia Estonia 26.9 +3.59% 63
Ethiopia Ethiopia 16.1 0% 94
Finland Finland 45.7 +5.79% 19
Fiji Fiji 8.53 +6.08% 117
France France 50.4 +3.03% 13
Gabon Gabon 5.39 0% 130
United Kingdom United Kingdom 40.8 +0.444% 29
Georgia Georgia 13.1 +0.00982% 103
Ghana Ghana 10.8 0% 110
Gambia Gambia 3.9 0% 137
Greece Greece 25.4 +17% 68
Guatemala Guatemala 22.4 0% 75
Hong Kong SAR China Hong Kong SAR China 39.8 +10.3% 31
Honduras Honduras 7.16 0% 126
Croatia Croatia 25.6 +2.51% 67
Haiti Haiti 5.26 0% 132
Hungary Hungary 51.5 +2.13% 11
Indonesia Indonesia 29.8 -0.00006% 51
India India 41.6 +0.29% 25
Ireland Ireland 54.3 0.00000% 9
Iran Iran 36.4 -5.34% 40
Iraq Iraq 5.25 +0.51% 133
Iceland Iceland 13.9 +0.000254% 100
Israel Israel 49.1 0.00000% 16
Italy Italy 41.9 +3.2% 24
Jamaica Jamaica 18.8 0% 85
Jordan Jordan 20.1 +7.32% 80
Japan Japan 54.7 0.00000% 8
Kazakhstan Kazakhstan 17.5 +3.75% 91
Kenya Kenya 15.1 0.00000% 95
Kyrgyzstan Kyrgyzstan 2.27 +0.0355% 147
Cambodia Cambodia 0.26 0% 152
South Korea South Korea 65.6 +2.22% 4
Kuwait Kuwait 31.9 0.0000% 49
Laos Laos 3.77 0% 138
Lebanon Lebanon 14.6 0% 98
St. Lucia St. Lucia 7.83 0% 120
Sri Lanka Sri Lanka 9.02 0.00000% 116
Lithuania Lithuania 35.7 +15.4% 41
Luxembourg Luxembourg 23.6 -1.98% 73
Latvia Latvia 20.9 +10.9% 78
Macao SAR China Macao SAR China 7.96 +31.3% 119
Morocco Morocco 28.3 0.00000% 57
Moldova Moldova 18.9 +0.649% 83
Madagascar Madagascar 1.04 0% 151
Maldives Maldives 2.63 0% 145
Mexico Mexico 42.4 -0.378% 23
North Macedonia North Macedonia 32.9 -0.00001% 47
Malta Malta 39.1 +17.2% 34
Myanmar (Burma) Myanmar (Burma) 92.6 0% 1
Montenegro Montenegro 14.9 0.00000% 97
Mongolia Mongolia 4.3 0.00000% 136
Mozambique Mozambique 10.9 0% 109
Mauritius Mauritius 5.24 0.00000% 134
Malawi Malawi 3.67 0.00000% 139
Malaysia Malaysia 44.6 0.00000% 21
Namibia Namibia 5.34 +3.16% 131
Niger Niger 18.3 0% 87
Nigeria Nigeria 33.4 0% 45
Nicaragua Nicaragua 13 -2.27% 104
Netherlands Netherlands 53.9 +4.15% 10
Norway Norway 40.9 +35.5% 28
Nepal Nepal 10.5 0.0000% 111
New Zealand New Zealand 23.8 +0.332% 72
Oman Oman 45 0% 20
Pakistan Pakistan 22.9 0% 74
Panama Panama 6.48 0.00000% 128
Peru Peru 13.5 +4.8% 102
Philippines Philippines 29 +1.37% 54
Papua New Guinea Papua New Guinea 12.6 0% 105
Poland Poland 33 +2.62% 46
Portugal Portugal 26.5 +3.79% 66
Paraguay Paraguay 21.8 0% 76
Palestinian Territories Palestinian Territories 7.21 0.00000% 124
Qatar Qatar 62.5 -0.00156% 5
Romania Romania 40 +9.29% 30
Russia Russia 34.9 0.00000% 42
Rwanda Rwanda 7.2 -0.699% 125
Saudi Arabia Saudi Arabia 29.1 -0.00343% 53
Senegal Senegal 26.8 -0.0983% 65
Singapore Singapore 82.3 +1.3% 2
El Salvador El Salvador 19.1 0% 82
Serbia Serbia 26.8 0.00000% 64
Suriname Suriname 11.5 0% 107
Slovakia Slovakia 46.7 +6.03% 17
Slovenia Slovenia 37.2 +0.332% 38
Sweden Sweden 49.9 +1.7% 14
Eswatini Eswatini 2.23 0% 148
Syria Syria 21.5 0% 77
Thailand Thailand 41.4 0% 27
Tajikistan Tajikistan 2.82 0% 142
Tonga Tonga 1.61 0% 150
Trinidad & Tobago Trinidad & Tobago 39.4 0% 32
Tunisia Tunisia 27.6 0.00000% 61
Turkey Turkey 33.8 -1.51% 44
Tanzania Tanzania 6.64 +0.394% 127
Uganda Uganda 11.1 0% 108
Ukraine Ukraine 28.3 0.00000% 56
Uruguay Uruguay 18.2 +1.69% 88
United States United States 44.1 +1.87% 22
Uzbekistan Uzbekistan 17.6 +0.691% 90
Venezuela Venezuela 34.3 0% 43
Vietnam Vietnam 38.7 +0.64% 35
Yemen Yemen 2.06 0% 149
South Africa South Africa 24.4 0.00000% 70
Zambia Zambia 9.73 0% 113
Zimbabwe Zimbabwe 9.59 0% 114

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.MNF.TECH.ZS.UN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.MNF.TECH.ZS.UN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))