Marine protected areas (% of territorial waters)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 0 93
Angola Angola 0 93
Albania Albania 3.4 +21.4% 67
United Arab Emirates United Arab Emirates 12 +4.35% 38
Argentina Argentina 12 +1.69% 38
American Samoa American Samoa 8.7 0% 47
Antigua & Barbuda Antigua & Barbuda 0.7 +133% 86
Australia Australia 45.4 +2.48% 7
Azerbaijan Azerbaijan 1 +150% 83
Belgium Belgium 38.3 +0.525% 10
Benin Benin 0 93
Bangladesh Bangladesh 8 0% 50
Bulgaria Bulgaria 8.2 +1.23% 49
Bahrain Bahrain 21.4 +1.42% 24
Bahamas Bahamas 7.7 -2.53% 53
Bosnia & Herzegovina Bosnia & Herzegovina 0 93
Belize Belize 20.4 +85.5% 25
Bermuda Bermuda 0 93
Brazil Brazil 26.6 -0.746% 17
Barbados Barbados 0 93
Brunei Brunei 0 -100% 93
Canada Canada 9.2 +1.1% 45
Chile Chile 41.2 -0.483% 8
China China 4.8 -12.7% 58
Côte d’Ivoire Côte d’Ivoire 0.1 0% 92
Cameroon Cameroon 11.4 +4.59% 41
Congo - Kinshasa Congo - Kinshasa 0.5 +150% 88
Congo - Brazzaville Congo - Brazzaville 3.5 +16.7% 66
Colombia Colombia 41.1 +140% 9
Comoros Comoros 0.4 0% 89
Cape Verde Cape Verde 0.1 92
Costa Rica Costa Rica 28.4 -2.07% 15
Cuba Cuba 4.2 +7.69% 63
Curaçao Curaçao 0 93
Cayman Islands Cayman Islands 0.1 0% 92
Cyprus Cyprus 8.6 0% 48
Germany Germany 45.4 -0.22% 7
Djibouti Djibouti 0.2 0% 91
Dominica Dominica 0.1 92
Denmark Denmark 18.6 +1.64% 28
Dominican Republic Dominican Republic 13.3 -23.1% 36
Algeria Algeria 0.1 0% 92
Ecuador Ecuador 19.3 +1.05% 26
Egypt Egypt 4.6 -8% 60
Eritrea Eritrea 0 93
Spain Spain 12.8 0% 37
Estonia Estonia 19.3 +2.66% 26
Finland Finland 11.8 -1.67% 40
Fiji Fiji 0.9 0% 84
France France 49.8 0% 5
Faroe Islands Faroe Islands 0 93
Micronesia (Federated States of) Micronesia (Federated States of) 0 93
Gabon Gabon 26.9 -6.6% 16
United Kingdom United Kingdom 46.8 +6.12% 6
Georgia Georgia 0.8 +14.3% 85
Ghana Ghana 0.1 0% 92
Gibraltar Gibraltar 0 93
Guinea Guinea 0.6 +20% 87
Gambia Gambia 0.6 0% 87
Guinea-Bissau Guinea-Bissau 9.1 +1.11% 46
Equatorial Guinea Equatorial Guinea 0.3 +50% 90
Greece Greece 4.7 +4.44% 59
Grenada Grenada 0.1 0% 92
Greenland Greenland 4.2 -6.67% 63
Guatemala Guatemala 0.9 +12.5% 84
Guam Guam 0 93
Guyana Guyana 0.1 92
Hong Kong SAR China Hong Kong SAR China 0 93
Honduras Honduras 4.9 +6.52% 57
Croatia Croatia 9.3 +3.33% 44
Haiti Haiti 1.8 +20% 76
Indonesia Indonesia 3 -3.23% 69
Isle of Man Isle of Man 10.8 42
India India 0.3 +50% 90
Ireland Ireland 2.4 +4.35% 72
Iran Iran 0.9 +12.5% 84
Iraq Iraq 0.3 90
Iceland Iceland 0.5 +25% 88
Israel Israel 0.6 87
Italy Italy 10.7 +0.943% 43
Jamaica Jamaica 0.7 -12.5% 86
Jordan Jordan 2.8 +180% 71
Japan Japan 13.8 -0.719% 35
Kazakhstan Kazakhstan 52.5 +3.55% 4
Kenya Kenya 0.6 -14.3% 87
Cambodia Cambodia 1.5 +7.14% 79
Kiribati Kiribati 11.9 +0.847% 39
St. Kitts & Nevis St. Kitts & Nevis 4.5 +12.5% 61
South Korea South Korea 2.2 -12% 74
Kuwait Kuwait 3.2 0% 68
Lebanon Lebanon 0.2 0% 91
Liberia Liberia 0.1 0% 92
Libya Libya 0.6 0% 87
St. Lucia St. Lucia 0.3 +50% 90
Sri Lanka Sri Lanka 0.1 0% 92
Lithuania Lithuania 23.2 -9.38% 20
Latvia Latvia 16.4 +2.5% 31
Saint Martin (French part) Saint Martin (French part) 97 +0.622% 3
Morocco Morocco 0.3 -57.1% 90
Monaco Monaco 100 +0.301% 1
Madagascar Madagascar 1.3 +44.4% 80
Maldives Maldives 0.1 0% 92
Mexico Mexico 22.6 +4.63% 21
Marshall Islands Marshall Islands 0.3 0% 90
Malta Malta 7.8 +5.41% 52
Myanmar (Burma) Myanmar (Burma) 0.5 0% 88
Montenegro Montenegro 5.6 +833% 54
Northern Mariana Islands Northern Mariana Islands 32.4 +0.621% 13
Mozambique Mozambique 2.2 +4.76% 74
Mauritania Mauritania 3.7 -11.9% 64
Mauritius Mauritius 0 93
Malaysia Malaysia 4.8 -14.3% 58
Namibia Namibia 1.7 0% 77
New Caledonia New Caledonia 100 +3.84% 1
Nigeria Nigeria 0 93
Nicaragua Nicaragua 3.6 +5.88% 65
Netherlands Netherlands 33.6 +24.9% 11
Norway Norway 1 -28.6% 83
Nauru Nauru 0 93
New Zealand New Zealand 30.4 0% 14
Oman Oman 16.2 +3,950% 32
Pakistan Pakistan 1.2 +50% 81
Panama Panama 26.3 -1.87% 18
Peru Peru 7.9 -1.25% 51
Philippines Philippines 1.6 -5.88% 78
Palau Palau 98 -2% 2
Papua New Guinea Papua New Guinea 0.1 0% 92
Poland Poland 24 +6.19% 19
Puerto Rico Puerto Rico 1.9 +5.56% 75
North Korea North Korea 0 93
Portugal Portugal 16.8 -0.592% 30
Palestinian Territories Palestinian Territories 0 93
French Polynesia French Polynesia 0 93
Qatar Qatar 2.3 0% 73
Romania Romania 22.1 -4.33% 22
Russia Russia 2.2 0% 74
Saudi Arabia Saudi Arabia 3.5 +40% 66
Sudan Sudan 17 +6.25% 29
Senegal Senegal 2.2 +15.8% 74
Singapore Singapore 0 93
Solomon Islands Solomon Islands 0.1 0% 92
Sierra Leone Sierra Leone 1.7 +6.25% 77
El Salvador El Salvador 0.8 +14.3% 85
Somalia Somalia 0 93
São Tomé & Príncipe São Tomé & Príncipe 0 93
Suriname Suriname 1.5 0% 79
Slovenia Slovenia 2.9 +26.1% 70
Sweden Sweden 16 +1.27% 33
Sint Maarten Sint Maarten 5.1 -41.4% 55
Seychelles Seychelles 32.6 -0.61% 12
Syria Syria 0.2 0% 91
Turks & Caicos Islands Turks & Caicos Islands 0.2 +100% 91
Togo Togo 0.7 +250% 86
Thailand Thailand 5 +4.17% 56
Turkmenistan Turkmenistan 4.2 +40% 63
Timor-Leste Timor-Leste 0.7 -50% 86
Tonga Tonga 0.1 0% 92
Trinidad & Tobago Trinidad & Tobago 0.1 92
Tunisia Tunisia 1.1 +10% 82
Turkey Turkey 1.7 -5.56% 77
Tuvalu Tuvalu 0 93
Tanzania Tanzania 2.3 -23.3% 73
Ukraine Ukraine 21.6 +135% 23
Uruguay Uruguay 1.5 +87.5% 79
United States United States 19 -0.524% 27
St. Vincent & Grenadines St. Vincent & Grenadines 0.2 0% 91
Venezuela Venezuela 4.4 +2.33% 62
British Virgin Islands British Virgin Islands 0 93
U.S. Virgin Islands U.S. Virgin Islands 0.8 -11.1% 85
Vietnam Vietnam 0.5 -16.7% 88
Vanuatu Vanuatu 0 93
Samoa Samoa 0.2 +100% 91
Yemen Yemen 0.4 -20% 89
South Africa South Africa 15.4 -0.645% 34

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'ER.MRN.PTMR.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'ER.MRN.PTMR.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))