Manufacturing, value added (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 8.26 +3.33% 94
Albania Albania 6.17 -10.3% 107
Argentina Argentina 15.1 -7.54% 35
Armenia Armenia 10.5 -0.959% 75
Australia Australia 5.49 +2.41% 112
Austria Austria 15.4 -3.21% 33
Azerbaijan Azerbaijan 5.24 +2.04% 114
Belgium Belgium 10.7 -5.18% 73
Benin Benin 10.2 +1.12% 77
Burkina Faso Burkina Faso 9.99 -6.54% 81
Bangladesh Bangladesh 21.9 -2.01% 11
Bahamas Bahamas 0.63 -26.4% 129
Bosnia & Herzegovina Bosnia & Herzegovina 11.6 -12.8% 64
Belarus Belarus 20.3 -8.34% 12
Brazil Brazil 12.4 -6.58% 60
Brunei Brunei 11 +6.28% 70
Botswana Botswana 5.55 -1.38% 111
Switzerland Switzerland 17.7 -0.819% 24
Chile Chile 9.01 -4.21% 89
China China 24.9 -2.47% 5
Côte d’Ivoire Côte d’Ivoire 12.9 -2.46% 54
Cameroon Cameroon 13.9 +3.1% 41
Congo - Kinshasa Congo - Kinshasa 18 -0.153% 21
Colombia Colombia 10.1 -7.06% 78
Cape Verde Cape Verde 4.86 +3.66% 116
Costa Rica Costa Rica 13 -4.81% 53
Cyprus Cyprus 4.18 -3.95% 120
Czechia Czechia 20 +0.0973% 14
Germany Germany 17.8 -2.99% 22
Dominica Dominica 4.73 +23.2% 117
Denmark Denmark 16.8 +5.37% 26
Dominican Republic Dominican Republic 12.5 -0.501% 59
Ecuador Ecuador 12.9 -3.18% 55
Egypt Egypt 13.9 -7.77% 42
Spain Spain 10.7 -1.67% 72
Estonia Estonia 11.3 -5.13% 67
Ethiopia Ethiopia 4.41 -1.63% 118
Finland Finland 13.9 -4.25% 43
Fiji Fiji 8.89 -5.06% 91
France France 9.43 -3.07% 85
Gabon Gabon 19.6 +0.532% 16
United Kingdom United Kingdom 8.01 -3.33% 98
Georgia Georgia 8.12 -2.8% 95
Ghana Ghana 10.1 -9.59% 80
Guinea-Bissau Guinea-Bissau 9.38 +5.93% 86
Equatorial Guinea Equatorial Guinea 24.8 +0.683% 6
Greece Greece 8.73 +0.0193% 92
Guatemala Guatemala 13.6 -3.02% 46
Honduras Honduras 14.9 -2.24% 36
Croatia Croatia 10.8 -11.1% 71
Haiti Haiti 26.2 +7.16% 4
Hungary Hungary 15.8 -8.47% 29
Indonesia Indonesia 19 +1.7% 19
India India 12.5 -3.72% 58
Ireland Ireland 27.2 -7.56% 3
Iraq Iraq 4.09 +35.5% 122
Iceland Iceland 7.61 -10.7% 103
Israel Israel 11.1 -5.11% 68
Italy Italy 14.6 -4.66% 37
Jamaica Jamaica 7.75 -2.53% 101
Jordan Jordan 17.7 +2.42% 23
Kazakhstan Kazakhstan 12 -2.7% 63
Kyrgyzstan Kyrgyzstan 12.6 +0.422% 57
Cambodia Cambodia 27.8 +5.59% 2
St. Kitts & Nevis St. Kitts & Nevis 4.04 -0.973% 123
Kuwait Kuwait 8 +5.91% 100
Laos Laos 9.05 -2.1% 88
St. Lucia St. Lucia 2.93 -11.5% 126
Sri Lanka Sri Lanka 17.6 -2.54% 25
Lesotho Lesotho 13.6 -2.42% 45
Lithuania Lithuania 14 -3.68% 40
Luxembourg Luxembourg 3.43 -11.5% 125
Latvia Latvia 9.93 -5.78% 83
Morocco Morocco 14.3 -1.37% 38
Moldova Moldova 7.72 -7.61% 102
Maldives Maldives 1.58 -20.3% 128
Mexico Mexico 19.6 -3.1% 15
North Macedonia North Macedonia 13.5 -0.772% 49
Mali Mali 7.38 +2.18% 104
Malta Malta 6.05 -2.05% 108
Myanmar (Burma) Myanmar (Burma) 22.5 +3% 9
Mongolia Mongolia 5.66 -10.1% 110
Mozambique Mozambique 7.26 +1.99% 105
Mauritania Mauritania 6.04 -6.89% 109
Mauritius Mauritius 11.1 -3.15% 69
Malaysia Malaysia 22.5 -2.26% 10
Namibia Namibia 10.6 -3.77% 74
Nigeria Nigeria 13.5 -12.1% 47
Nicaragua Nicaragua 13.5 -6.43% 48
Netherlands Netherlands 10.4 -3.66% 76
Norway Norway 6.19 +2.33% 106
Nepal Nepal 4.37 -3.84% 119
Oman Oman 10.1 +7.55% 79
Pakistan Pakistan 13.1 -3.59% 51
Panama Panama 4.87 -2.33% 115
Peru Peru 12.3 -2.49% 61
Philippines Philippines 15.7 -3.41% 30
Papua New Guinea Papua New Guinea 1.63 -1.88% 127
Poland Poland 15.4 -11.8% 32
Puerto Rico Puerto Rico 44.2 +1.4% 1
Portugal Portugal 11.5 -2.65% 65
Paraguay Paraguay 19 -1.98% 18
Qatar Qatar 8.12 -6.32% 96
Romania Romania 11.4 -9.57% 66
Russia Russia 13.3 +3.98% 50
Rwanda Rwanda 8.94 -6.29% 90
Saudi Arabia Saudi Arabia 15.6 -2.03% 31
Senegal Senegal 14.1 -3.16% 39
Singapore Singapore 16.3 -3.79% 27
Sierra Leone Sierra Leone 8.04 +4.87% 97
El Salvador El Salvador 12 -3.56% 62
Slovakia Slovakia 16.3 -3.14% 28
Slovenia Slovenia 19.2 -1.86% 17
Sweden Sweden 13.8 -2.51% 44
Seychelles Seychelles 4.17 -11.2% 121
Turks & Caicos Islands Turks & Caicos Islands 0.447 -4.71% 130
Thailand Thailand 24.3 -2.63% 8
Tanzania Tanzania 8 -4.73% 99
Uganda Uganda 15.2 -2.93% 34
Ukraine Ukraine 8.41 +1.19% 93
Uruguay Uruguay 9.69 -0.544% 84
United States United States 9.98 -2.59% 82
Uzbekistan Uzbekistan 20.2 +4.29% 13
St. Vincent & Grenadines St. Vincent & Grenadines 3.76 +2.15% 124
Vietnam Vietnam 24.4 +1.04% 7
Samoa Samoa 5.31 +4.07% 113
Kosovo Kosovo 13.1 +1.19% 52
South Africa South Africa 12.8 -1.27% 56
Zambia Zambia 9.28 +9.19% 87
Zimbabwe Zimbabwe 18.6 +13.2% 20

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.IND.MANF.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.IND.MANF.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))