Lower secondary completion rate, male (% of relevant age group)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 117 +16.3% 4
Albania Albania 99.2 -4.32% 27
Argentina Argentina 96.8 -10.3% 36
Armenia Armenia 103 -3.15% 8
Austria Austria 95.5 -3.86% 41
Azerbaijan Azerbaijan 86.2 -2.28% 74
Belgium Belgium 91.5 -1.35% 64
Benin Benin 30.4 -18% 118
Burkina Faso Burkina Faso 26.6 -21.8% 119
Bangladesh Bangladesh 74.8 +12.7% 89
Bulgaria Bulgaria 96.8 -2.05% 37
Bahrain Bahrain 100 +3.97% 23
Bosnia & Herzegovina Bosnia & Herzegovina 88.4 -0.95% 70
Belarus Belarus 95 +3.45% 47
Belize Belize 56.4 -23.7% 103
Bolivia Bolivia 80.7 -7.7% 85
Barbados Barbados 87.1 -13.9% 72
Bhutan Bhutan 55.3 -22.7% 104
Botswana Botswana 86 -3.87% 75
Switzerland Switzerland 93.4 -1.3% 56
Chile Chile 102 -0.6% 10
Côte d’Ivoire Côte d’Ivoire 60.2 -0.36% 100
Cameroon Cameroon 35.2 -2.2% 114
Colombia Colombia 78.8 -2.67% 87
Costa Rica Costa Rica 65.5 -5.87% 96
Cuba Cuba 86.6 -0.307% 73
Cayman Islands Cayman Islands 92 +6.49% 63
Cyprus Cyprus 105 +0.957% 7
Czechia Czechia 93 -2.9% 57
Germany Germany 61.4 -2.15% 98
Denmark Denmark 100 -0.977% 20
Dominican Republic Dominican Republic 74 +14.3% 91
Algeria Algeria 60.8 -20.4% 99
Ecuador Ecuador 92.3 -6.3% 61
Eritrea Eritrea 50.4 +7.43% 107
Spain Spain 88.8 -4.44% 69
Estonia Estonia 100 +1.48% 21
Finland Finland 100 +0.326% 22
Fiji Fiji 95.4 -3.59% 43
France France 100 +0.906% 18
Micronesia (Federated States of) Micronesia (Federated States of) 73.3 +1.13% 92
United Kingdom United Kingdom 99.4 +1.68% 26
Georgia Georgia 98.6 -4.15% 30
Gibraltar Gibraltar 126 -2.62% 3
Greece Greece 95.1 +1.09% 45
Guatemala Guatemala 49.8 -12.4% 108
Croatia Croatia 101 +1.28% 15
Hungary Hungary 95 -3.09% 46
Indonesia Indonesia 103 +2.02% 9
India India 88.9 -0.151% 68
Ireland Ireland 102 +1.66% 14
Israel Israel 93.7 +0.467% 53
Italy Italy 96 -4.08% 39
Jordan Jordan 85.6 -3.65% 76
Kazakhstan Kazakhstan 92.4 +0.992% 59
Kyrgyzstan Kyrgyzstan 94.6 -1.37% 48
Cambodia Cambodia 57.1 +8.13% 102
Kiribati Kiribati 88.3 -5.35% 71
South Korea South Korea 98.8 +3.22% 29
Laos Laos 58.1 -4.85% 101
Liberia Liberia 44.2 +0.141% 110
St. Lucia St. Lucia 83 -5.96% 78
Sri Lanka Sri Lanka 95.4 -0.487% 44
Lesotho Lesotho 40.2 -1.3% 112
Lithuania Lithuania 99.8 +6.26% 24
Luxembourg Luxembourg 97.9 -4.41% 34
Latvia Latvia 95.6 -0.739% 40
Macao SAR China Macao SAR China 82.9 -5.12% 79
Morocco Morocco 66.8 -5.83% 93
Madagascar Madagascar 30.9 -7.17% 117
Maldives Maldives 82.2 -9.66% 82
Mexico Mexico 92 +1.27% 62
Marshall Islands Marshall Islands 47.6 -71.6% 109
North Macedonia North Macedonia 94.2 +6.83% 50
Malta Malta 99.2 -1.15% 28
Montenegro Montenegro 97.9 +2.68% 33
Mongolia Mongolia 93.7 +1.73% 52
Mozambique Mozambique 43.7 +24.1% 111
Malawi Malawi 22.5 +6.54% 120
Malaysia Malaysia 81.6 +2.66% 83
Niger Niger 15.9 -12.7% 121
Norway Norway 99.6 -0.0495% 25
Nepal Nepal 102 +7.95% 12
Nauru Nauru 74.6 +7% 90
Oman Oman 90.9 -7.3% 66
Pakistan Pakistan 50.9 +0.099% 106
Panama Panama 82.9 +0.268% 80
Peru Peru 91.2 +1.47% 65
Philippines Philippines 94.1 +17.8% 51
Palau Palau 94.5 -0.748% 49
Poland Poland 131 +30.2% 2
Portugal Portugal 102 +1.4% 13
Paraguay Paraguay 66.2 -2.32% 95
Palestinian Territories Palestinian Territories 89.7 +1.66% 67
Qatar Qatar 95.5 +9.18% 42
Romania Romania 78.4 +11.7% 88
Rwanda Rwanda 34.9 -10.4% 115
Saudi Arabia Saudi Arabia 116 +16.1% 5
Senegal Senegal 34.5 -7.36% 116
Singapore Singapore 101 +2.65% 17
El Salvador El Salvador 65.5 -7.69% 97
San Marino San Marino 93.5 +1.36% 55
Serbia Serbia 96.5 -0.393% 38
Slovakia Slovakia 82.5 -1.57% 81
Slovenia Slovenia 93.6 -0.822% 54
Sweden Sweden 100 -0.108% 19
Seychelles Seychelles 101 -21.9% 16
Syria Syria 39.8 -4.76% 113
Turks & Caicos Islands Turks & Caicos Islands 113 +6.83% 6
Togo Togo 66.8 +5.71% 94
Thailand Thailand 135 -3.45% 1
Tonga Tonga 92.3 +40.1% 60
Turkey Turkey 92.4 -1.34% 58
Tuvalu Tuvalu 81.3 +1.14% 84
Uruguay Uruguay 79.5 +33.6% 86
United States United States 102 +2.6% 11
Uzbekistan Uzbekistan 97.1 +1.2% 35
Vietnam Vietnam 98.4 +12.4% 31
Vanuatu Vanuatu 54.1 -9.8% 105
Samoa Samoa 98.3 +1.33% 32
South Africa South Africa 84.8 -10.6% 77

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.SEC.CMPT.LO.MA.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.SEC.CMPT.LO.MA.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))