Livestock production index (2014-2016 = 100)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 95.4 -0.697% 156
Angola Angola 131 +6.54% 33
Albania Albania 83.7 -8.77% 184
United Arab Emirates United Arab Emirates 132 -4.26% 30
Argentina Argentina 114 +2.59% 69
Armenia Armenia 100 -5.01% 137
Antigua & Barbuda Antigua & Barbuda 112 +40.8% 78
Australia Australia 87.5 -0.455% 178
Austria Austria 100 +0.14% 134
Azerbaijan Azerbaijan 121 +2.42% 46
Burundi Burundi 132 +1.35% 29
Belgium Belgium 102 -3.02% 122
Benin Benin 141 +7.81% 20
Burkina Faso Burkina Faso 96.5 +1.45% 153
Bangladesh Bangladesh 153 +4.66% 12
Bulgaria Bulgaria 89.2 -2.31% 174
Bahrain Bahrain 134 +4.7% 26
Bahamas Bahamas 92.3 +0.523% 165
Bosnia & Herzegovina Bosnia & Herzegovina 83.8 +17% 183
Belarus Belarus 110 -0.928% 83
Belize Belize 117 +8.63% 61
Bolivia Bolivia 120 +2.96% 48
Brazil Brazil 112 +3.32% 76
Barbados Barbados 101 +13.1% 133
Brunei Brunei 123 +2.57% 42
Bhutan Bhutan 132 -11.7% 28
Botswana Botswana 90.3 -0.199% 171
Central African Republic Central African Republic 110 +1.48% 84
Canada Canada 119 +0.787% 57
Switzerland Switzerland 97.4 -0.966% 152
Chile Chile 103 -2.19% 115
China China 110 +1.31% 86
Côte d’Ivoire Côte d’Ivoire 117 -0.89% 63
Cameroon Cameroon 110 +4.45% 81
Congo - Kinshasa Congo - Kinshasa 106 -1.39% 102
Congo - Brazzaville Congo - Brazzaville 107 +0.747% 98
Colombia Colombia 110 +0.583% 82
Comoros Comoros 99.8 +3.69% 140
Cape Verde Cape Verde 88.7 +4.76% 176
Costa Rica Costa Rica 113 +0.186% 71
Cuba Cuba 87.4 +11.1% 179
Cyprus Cyprus 122 -3.5% 45
Czechia Czechia 102 -1.68% 120
Germany Germany 93.4 -3.82% 162
Djibouti Djibouti 131 +0.523% 32
Dominica Dominica 102 +0.0293% 121
Denmark Denmark 102 -3.87% 123
Dominican Republic Dominican Republic 111 +4.23% 79
Algeria Algeria 98.1 +0.812% 149
Ecuador Ecuador 93.9 -0.656% 160
Egypt Egypt 119 -2.84% 55
Eritrea Eritrea 109 +0.728% 88
Spain Spain 119 -0.951% 58
Estonia Estonia 94.6 -0.474% 158
Ethiopia Ethiopia 116 +3.16% 65
Finland Finland 97.9 -2.02% 150
Fiji Fiji 167 +35.5% 7
France France 93.2 -3.91% 164
Faroe Islands Faroe Islands 107 +3.91% 96
Micronesia (Federated States of) Micronesia (Federated States of) 104 +0.638% 113
Gabon Gabon 104 +1.42% 111
United Kingdom United Kingdom 105 -1.21% 104
Georgia Georgia 106 +1.11% 103
Ghana Ghana 119 +2.71% 56
Guinea Guinea 109 +6.26% 92
Gambia Gambia 73.4 +0.15% 191
Guinea-Bissau Guinea-Bissau 101 +0.829% 131
Equatorial Guinea Equatorial Guinea 86.6 -12.8% 182
Greece Greece 100 +2.89% 136
Grenada Grenada 137 -0.399% 23
Guatemala Guatemala 120 +1.41% 49
Guyana Guyana 154 +10.2% 10
Hong Kong SAR China Hong Kong SAR China 150 -14.4% 13
Honduras Honduras 117 +2.23% 62
Croatia Croatia 97.8 -4.52% 151
Haiti Haiti 102 +1.16% 124
Hungary Hungary 99.6 -4.99% 142
Indonesia Indonesia 190 +10.9% 2
India India 133 -2.05% 27
Ireland Ireland 123 +1.63% 41
Iran Iran 99.9 -2.45% 138
Iraq Iraq 112 -9.56% 77
Iceland Iceland 101 -2.14% 129
Israel Israel 109 +4.12% 87
Italy Italy 102 -4.65% 119
Jamaica Jamaica 115 +7.44% 67
Jordan Jordan 130 -2.51% 34
Japan Japan 105 +0.721% 106
Kazakhstan Kazakhstan 125 +0.743% 39
Kenya Kenya 104 +0.155% 114
Kyrgyzstan Kyrgyzstan 118 +5.03% 59
Cambodia Cambodia 95.8 +1.75% 155
Kiribati Kiribati 113 +1.59% 75
St. Kitts & Nevis St. Kitts & Nevis 131 +35.6% 31
South Korea South Korea 109 +0.673% 89
Kuwait Kuwait 146 +25.8% 14
Laos Laos 183 +1.1% 6
Lebanon Lebanon 123 +4.2% 42
Liberia Liberia 104 +0.824% 112
Libya Libya 121 +1.96% 47
St. Lucia St. Lucia 118 +31.2% 60
Sri Lanka Sri Lanka 125 -2.9% 38
Lesotho Lesotho 93.8 +1.32% 161
Lithuania Lithuania 91.2 -0.142% 168
Luxembourg Luxembourg 120 +0.0916% 50
Latvia Latvia 102 -0.497% 125
Macao SAR China Macao SAR China 73.4 +23.7% 190
Morocco Morocco 105 -6.69% 108
Moldova Moldova 76.2 +0.501% 188
Madagascar Madagascar 94.4 -0.0424% 159
Maldives Maldives 99.5 +0.0905% 143
Mexico Mexico 120 +2.27% 51
North Macedonia North Macedonia 93.2 +2.85% 163
Mali Mali 127 +1.1% 35
Malta Malta 96.3 +0.806% 154
Myanmar (Burma) Myanmar (Burma) 35.5 +0.113% 192
Montenegro Montenegro 108 +3.61% 94
Mongolia Mongolia 159 +27.7% 9
Mozambique Mozambique 153 +15.4% 11
Mauritania Mauritania 109 +1.39% 90
Mauritius Mauritius 119 +15.5% 54
Malawi Malawi 190 +8.34% 1
Malaysia Malaysia 99.7 -0.697% 141
Namibia Namibia 91.3 +8.24% 167
New Caledonia New Caledonia 95 -0.168% 157
Niger Niger 115 -3.26% 66
Nigeria Nigeria 113 +1.23% 74
Nicaragua Nicaragua 126 -3.1% 36
Netherlands Netherlands 101 -2.57% 130
Norway Norway 103 -1.15% 118
Nepal Nepal 144 +1.62% 17
Nauru Nauru 89.4 +0.314% 172
New Zealand New Zealand 99 -3.41% 145
Oman Oman 187 +74.9% 4
Pakistan Pakistan 125 +3.64% 37
Panama Panama 107 +5.36% 99
Peru Peru 123 +2.45% 43
Philippines Philippines 90.4 +4.52% 170
Papua New Guinea Papua New Guinea 108 +1.4% 95
Poland Poland 113 -0.273% 72
Puerto Rico Puerto Rico 89.3 +6.92% 173
North Korea North Korea 95.4 +0.771% 156
Portugal Portugal 105 -1.78% 105
Paraguay Paraguay 113 +0.0353% 70
Palestinian Territories Palestinian Territories 105 -11.7% 107
French Polynesia French Polynesia 104 -3.24% 110
Qatar Qatar 140 -24.2% 21
Romania Romania 83.6 -3.19% 185
Russia Russia 117 +4.53% 64
Rwanda Rwanda 87.2 -7.2% 181
Saudi Arabia Saudi Arabia 165 +2.11% 8
Sudan Sudan 106 +0.997% 101
Senegal Senegal 144 +8.75% 18
Singapore Singapore 139 -0.351% 22
Solomon Islands Solomon Islands 102 +0.464% 127
Sierra Leone Sierra Leone 102 -4.4% 126
El Salvador El Salvador 98.9 +4.44% 147
Somalia Somalia 98.6 -1.03% 148
Serbia Serbia 107 +0.649% 97
South Sudan South Sudan 113 -1.69% 73
São Tomé & Príncipe São Tomé & Príncipe 108 +0.158% 93
Suriname Suriname 124 -0.918% 40
Slovakia Slovakia 88.2 -3.79% 177
Slovenia Slovenia 102 -3.97% 128
Sweden Sweden 99.8 +0.12% 139
Eswatini Eswatini 100 -0.14% 135
Seychelles Seychelles 190 -1.01% 3
Syria Syria 98.9 -0.493% 146
Chad Chad 145 +6.94% 16
Togo Togo 143 +13.6% 19
Thailand Thailand 103 +0.487% 116
Tajikistan Tajikistan 186 +0.476% 5
Turkmenistan Turkmenistan 114 +0.0966% 68
Timor-Leste Timor-Leste 92 +9.67% 166
Tonga Tonga 101 -0.767% 132
Trinidad & Tobago Trinidad & Tobago 90.9 +9.73% 169
Tunisia Tunisia 104 -0.476% 109
Turkey Turkey 137 +4.14% 24
Tuvalu Tuvalu 106 +1.14% 100
Tanzania Tanzania 145 +6.21% 15
Uganda Uganda 99 -0.662% 144
Ukraine Ukraine 81.2 -10.5% 186
Uruguay Uruguay 110 +3.41% 85
United States United States 111 +0.445% 80
Uzbekistan Uzbekistan 122 +3.27% 44
St. Vincent & Grenadines St. Vincent & Grenadines 88.9 -2.94% 175
Venezuela Venezuela 87.2 +5.08% 180
Vietnam Vietnam 135 +3.22% 25
Vanuatu Vanuatu 75.5 -7.66% 189
Samoa Samoa 80.6 -4.73% 187
Yemen Yemen 120 +1.21% 52
South Africa South Africa 103 -0.94% 117
Zambia Zambia 109 -0.891% 91
Zimbabwe Zimbabwe 120 +3.1% 53

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.PRD.LVSK.XD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.PRD.LVSK.XD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))