Liner shipping connectivity index (maximum value in 2004 = 100)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 6.59 -30.9% 130
Angola Angola 23.4 -0.915% 70
Albania Albania 4.37 +4.06% 152
United Arab Emirates United Arab Emirates 73.9 -3.34% 15
Argentina Argentina 36 +8.97% 47
American Samoa American Samoa 8.09 +7.49% 113
Antigua & Barbuda Antigua & Barbuda 5.18 +3.19% 142
Australia Australia 35.7 -4.03% 48
Belgium Belgium 87 -0.9% 10
Benin Benin 19.1 +4.01% 74
Bangladesh Bangladesh 14.7 +6.28% 82
Bulgaria Bulgaria 7.78 -0.674% 117
Bahrain Bahrain 31.7 +26.2% 58
Bahamas Bahamas 28.6 -11.3% 62
Belize Belize 7.61 -1.64% 118
Bermuda Bermuda 1.79 0% 161
Brazil Brazil 39.7 +7.96% 39
Barbados Barbados 7.02 -12.4% 126
Brunei Brunei 6.85 +4.66% 128
Canada Canada 48.8 +3.42% 31
Chile Chile 36.3 +0.196% 45
China China 171 +5.43% 1
Côte d’Ivoire Côte d’Ivoire 19.3 -3.49% 73
Cameroon Cameroon 18.5 -2.18% 75
Congo - Kinshasa Congo - Kinshasa 4.83 -5.78% 148
Congo - Brazzaville Congo - Brazzaville 24 -3.3% 67
Colombia Colombia 49.2 -0.276% 30
Comoros Comoros 4.94 -19.5% 145
Cape Verde Cape Verde 4.23 -0.0601% 153
Costa Rica Costa Rica 23.9 -2.52% 69
Cuba Cuba 8.03 -5.57% 115
Curaçao Curaçao 6.59 -30.9% 130
Cayman Islands Cayman Islands 2.04 0% 159
Cyprus Cyprus 17.8 -0.87% 76
Germany Germany 85.1 +2.09% 11
Djibouti Djibouti 34.1 +5.04% 51
Dominica Dominica 5.89 -7.11% 137
Denmark Denmark 45.8 -1.56% 34
Dominican Republic Dominican Republic 42.2 +10.4% 35
Algeria Algeria 12.2 -4.77% 89
Ecuador Ecuador 37.4 -1.65% 42
Egypt Egypt 66.7 -2.68% 21
Eritrea Eritrea 3.46 -20.5% 154
Spain Spain 90.5 +1.21% 8
Estonia Estonia 10.7 +23.6% 94
Finland Finland 15 +1.97% 81
Fiji Fiji 10.3 +11.4% 97
France France 74.3 -4.08% 14
Faroe Islands Faroe Islands 6.04 -0.0705% 135
Micronesia (Federated States of) Micronesia (Federated States of) 4.41 0% 151
Gabon Gabon 12.9 +3.52% 85
United Kingdom United Kingdom 90 -1.05% 9
Georgia Georgia 5.95 -3.59% 136
Ghana Ghana 37.2 -7% 43
Gibraltar Gibraltar 2.52 -5.64% 157
Guinea Guinea 9.17 +16.4% 101
Gambia Gambia 6.64 +7.7% 129
Guinea-Bissau Guinea-Bissau 4.89 +20.5% 146
Equatorial Guinea Equatorial Guinea 11.8 +1.17% 90
Greece Greece 60.1 -0.343% 24
Grenada Grenada 5.61 -9.7% 139
Greenland Greenland 5.21 -1.9% 141
Guatemala Guatemala 37.2 +19% 44
Guam Guam 9.37 +0.0516% 100
Guyana Guyana 8.9 +8.38% 104
Hong Kong SAR China Hong Kong SAR China 90.6 -3.24% 7
Honduras Honduras 11.8 -1.6% 91
Croatia Croatia 33.6 +0.0422% 55
Haiti Haiti 8.68 -6.25% 105
Indonesia Indonesia 32.7 -6.32% 56
India India 58.9 +2.92% 26
Ireland Ireland 12.4 -2.05% 87
Iran Iran 31.1 -0.519% 60
Iraq Iraq 32.3 -6.08% 57
Iceland Iceland 6.99 +0.123% 127
Israel Israel 41.5 -0.281% 37
Italy Italy 76.3 +0.5% 13
Jamaica Jamaica 33.8 -4.04% 54
Jordan Jordan 33.9 -0.321% 53
Japan Japan 69.7 -20.4% 17
Kenya Kenya 16.5 -1.45% 78
Cambodia Cambodia 8.13 -13.2% 112
Kiribati Kiribati 6.2 +16.4% 133
St. Kitts & Nevis St. Kitts & Nevis 4.61 -8.92% 149
South Korea South Korea 111 +2.49% 2
Kuwait Kuwait 10.2 -9.34% 98
Lebanon Lebanon 41.6 +25.2% 36
Liberia Liberia 6.56 -11.7% 132
Libya Libya 12.4 -0.238% 88
St. Lucia St. Lucia 5.61 -0.294% 139
Sri Lanka Sri Lanka 70.7 -1.83% 16
Lithuania Lithuania 24 +69.2% 68
Latvia Latvia 10.3 +0.785% 96
Morocco Morocco 69.3 +1.84% 19
Madagascar Madagascar 7.49 -3.61% 120
Maldives Maldives 7.31 +1.28% 124
Mexico Mexico 47.3 -2.31% 33
Marshall Islands Marshall Islands 7.21 +7.09% 125
Malta Malta 57.4 +23.9% 27
Myanmar (Burma) Myanmar (Burma) 8.54 -0.771% 108
Montenegro Montenegro 4.43 -18.6% 150
Northern Mariana Islands Northern Mariana Islands 5.16 -0.785% 144
Mozambique Mozambique 14.1 -2.83% 84
Mauritania Mauritania 6.05 -1.96% 134
Mauritius Mauritius 24.6 -27.2% 66
Malaysia Malaysia 98.7 -0.828% 5
Namibia Namibia 22.2 +52% 71
New Caledonia New Caledonia 10.6 +0.724% 95
Nigeria Nigeria 20.8 -2.28% 72
Nicaragua Nicaragua 8.02 -14.8% 116
Netherlands Netherlands 90.7 -0.0498% 6
Norway Norway 10.9 +3.98% 93
New Zealand New Zealand 30.5 +5.65% 61
Oman Oman 59.3 -2.35% 25
Pakistan Pakistan 34.1 -16.4% 52
Panama Panama 51.6 +3.11% 29
Peru Peru 40.4 +3.11% 38
Philippines Philippines 25.5 -12.7% 65
Palau Palau 2.46 -5.76% 158
Papua New Guinea Papua New Guinea 11 -1.28% 92
Poland Poland 51.8 -0.599% 28
Puerto Rico Puerto Rico 12.8 -2.21% 86
Portugal Portugal 61.2 +8.63% 23
Paraguay Paraguay 1.85 0% 160
French Polynesia French Polynesia 14.3 +3.38% 83
Qatar Qatar 37.7 +2.37% 41
Romania Romania 26.7 +2.34% 64
Russia Russia 31.7 -8.53% 59
Saudi Arabia Saudi Arabia 69.5 -0.782% 18
Sudan Sudan 8.38 -12% 110
Senegal Senegal 17.5 +2.96% 77
Singapore Singapore 111 -2.72% 3
Solomon Islands Solomon Islands 8.14 -9.2% 111
Sierra Leone Sierra Leone 7.34 -42.6% 123
El Salvador El Salvador 7.55 -10.6% 119
Somalia Somalia 9.65 -4.76% 99
São Tomé & Príncipe São Tomé & Príncipe 4.85 -1.68% 147
Suriname Suriname 8.9 +1.4% 103
Slovenia Slovenia 34.6 +0.596% 50
Sweden Sweden 48.2 -0.352% 32
Sint Maarten Sint Maarten 9.09 -10.2% 102
Seychelles Seychelles 8.54 +0.989% 107
Syria Syria 8.39 -3.41% 109
Turks & Caicos Islands Turks & Caicos Islands 1.13 0% 163
Togo Togo 36.2 -0.9% 46
Thailand Thailand 68.9 +8.74% 20
Timor-Leste Timor-Leste 3.29 +25.1% 155
Tonga Tonga 8.06 +8.69% 114
Trinidad & Tobago Trinidad & Tobago 15.1 -2.68% 80
Tunisia Tunisia 5.62 -8.48% 138
Turkey Turkey 61.5 +1.14% 22
Tuvalu Tuvalu 1.7 0% 162
Tanzania Tanzania 15.8 +0.981% 79
Ukraine Ukraine 28.2 +1.14% 63
Uruguay Uruguay 35.2 +11.4% 49
United States United States 103 -1.19% 4
St. Vincent & Grenadines St. Vincent & Grenadines 5.18 -20.7% 143
Venezuela Venezuela 7.36 -33.1% 122
British Virgin Islands British Virgin Islands 3.01 -40.6% 156
U.S. Virgin Islands U.S. Virgin Islands 5.23 -8.62% 140
Vietnam Vietnam 77.5 -2.89% 12
Vanuatu Vanuatu 7.44 +0.882% 121
Samoa Samoa 8.63 +6.99% 106
Yemen Yemen 6.56 -15.4% 131
South Africa South Africa 39.1 -5.32% 40

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'IS.SHP.GCNW.XQ'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'IS.SHP.GCNW.XQ'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))