Land area (sq. km)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 180 0% 198
Afghanistan Afghanistan 652,230 0% 40
Angola Angola 1,246,700 0% 22
Albania Albania 27,400 0% 143
Andorra Andorra 470 0% 185
United Arab Emirates United Arab Emirates 71,020 0% 118
Argentina Argentina 2,736,690 0% 8
Armenia Armenia 28,470 0% 138
American Samoa American Samoa 200 0% 197
Antigua & Barbuda Antigua & Barbuda 440 0% 188
Australia Australia 7,692,020 0% 6
Austria Austria 82,520 0% 114
Azerbaijan Azerbaijan 82,650 0% 113
Burundi Burundi 25,680 0% 144
Belgium Belgium 30,494 0% 136
Benin Benin 112,760 0% 100
Burkina Faso Burkina Faso 273,600 0% 74
Bangladesh Bangladesh 130,170 0% 95
Bulgaria Bulgaria 108,560 0% 102
Bahrain Bahrain 790 0% 177
Bahamas Bahamas 10,010 0% 162
Bosnia & Herzegovina Bosnia & Herzegovina 51,200 0% 126
Belarus Belarus 202,990 +0.0197% 83
Belize Belize 22,810 0% 148
Bermuda Bermuda 54 0% 202
Bolivia Bolivia 1,083,300 0% 27
Brazil Brazil 8,358,140 0% 5
Barbados Barbados 430 0% 189
Brunei Brunei 5,270 0% 165
Bhutan Bhutan 38,140 0% 133
Botswana Botswana 566,730 0% 47
Central African Republic Central African Republic 622,980 0% 43
Canada Canada 8,788,700 0% 4
Switzerland Switzerland 39,510 0% 132
Chile Chile 743,532 0% 37
China China 9,388,210 0% 2
Côte d’Ivoire Côte d’Ivoire 318,000 0% 67
Cameroon Cameroon 472,710 0% 52
Congo - Kinshasa Congo - Kinshasa 2,267,050 0% 11
Congo - Brazzaville Congo - Brazzaville 341,500 0% 65
Colombia Colombia 1,109,500 0% 26
Comoros Comoros 1,861 0% 172
Cape Verde Cape Verde 4,030 0% 167
Costa Rica Costa Rica 51,060 0% 127
Cuba Cuba 103,800 0% 104
Curaçao Curaçao 444 0% 187
Cayman Islands Cayman Islands 240 0% 196
Cyprus Cyprus 9,240 0% 163
Czechia Czechia 77,172 -0.0196% 115
Germany Germany 349,360 -0.00859% 64
Djibouti Djibouti 23,180 0% 147
Dominica Dominica 750 0% 178
Denmark Denmark 40,000 0% 131
Dominican Republic Dominican Republic 48,198 0% 128
Algeria Algeria 2,381,741 0% 10
Ecuador Ecuador 248,360 0% 77
Egypt Egypt 995,450 0% 29
Eritrea Eritrea 121,041 0% 97
Spain Spain 499,714 -0.00391% 51
Estonia Estonia 42,730 -0.0468% 130
Ethiopia Ethiopia 1,128,571 0% 25
Finland Finland 303,948 0% 71
Fiji Fiji 18,270 0% 152
France France 547,557 0% 48
Faroe Islands Faroe Islands 1,370 0% 173
Micronesia (Federated States of) Micronesia (Federated States of) 700 0% 181
Gabon Gabon 257,670 0% 76
United Kingdom United Kingdom 241,930 0% 79
Georgia Georgia 69,490 0% 119
Ghana Ghana 227,533 0% 82
Guinea Guinea 245,720 0% 78
Gambia Gambia 10,120 0% 161
Guinea-Bissau Guinea-Bissau 28,120 0% 139
Equatorial Guinea Equatorial Guinea 28,050 0% 140
Greece Greece 128,900 0% 96
Grenada Grenada 340 0% 192
Greenland Greenland 410,450 0% 58
Guatemala Guatemala 107,160 0% 103
Guam Guam 540 0% 184
Guyana Guyana 196,850 0% 85
Honduras Honduras 111,890 0% 101
Croatia Croatia 55,960 0% 124
Haiti Haiti 27,560 0% 142
Hungary Hungary 91,260 0% 110
Indonesia Indonesia 1,892,555 0% 14
Isle of Man Isle of Man 570 0% 183
India India 2,973,190 0% 7
Ireland Ireland 68,890 0% 120
Iran Iran 1,622,500 0% 17
Iraq Iraq 434,128 0% 57
Iceland Iceland 100,830 0% 105
Italy Italy 295,720 +0.00101% 73
Jamaica Jamaica 10,830 0% 159
Jordan Jordan 88,794 0% 111
Japan Japan 364,500 0% 62
Kazakhstan Kazakhstan 2,699,700 0% 9
Kenya Kenya 569,140 0% 46
Kyrgyzstan Kyrgyzstan 191,800 0% 87
Cambodia Cambodia 176,520 0% 89
Kiribati Kiribati 810 0% 176
St. Kitts & Nevis St. Kitts & Nevis 260 0% 195
South Korea South Korea 97,600 0% 106
Kuwait Kuwait 17,820 0% 153
Laos Laos 230,800 0% 80
Lebanon Lebanon 10,230 0% 160
Liberia Liberia 96,320 0% 107
Libya Libya 1,759,540 0% 16
St. Lucia St. Lucia 610 0% 182
Liechtenstein Liechtenstein 160 0% 199
Sri Lanka Sri Lanka 61,860 0% 123
Lesotho Lesotho 30,360 0% 137
Lithuania Lithuania 62,604 -0.00958% 121
Luxembourg Luxembourg 2,574 0% 170
Latvia Latvia 62,230 0% 122
Saint Martin (French part) Saint Martin (French part) 50 0% 203
Morocco Morocco 446,300 0% 55
Monaco Monaco 2.08 0% 207
Moldova Moldova 32,890 -0.243% 135
Madagascar Madagascar 581,800 0% 44
Maldives Maldives 300 0% 194
Mexico Mexico 1,943,950 0% 13
Marshall Islands Marshall Islands 180 0% 198
North Macedonia North Macedonia 25,220 0% 145
Mali Mali 1,220,190 0% 23
Malta Malta 320 0% 193
Myanmar (Burma) Myanmar (Burma) 652,670 0% 39
Montenegro Montenegro 13,450 0% 156
Mongolia Mongolia 1,557,507 -0.00001% 18
Northern Mariana Islands Northern Mariana Islands 460 0% 186
Mozambique Mozambique 786,380 0% 34
Mauritania Mauritania 1,030,700 0% 28
Mauritius Mauritius 1,997 0% 171
Malawi Malawi 94,280 0% 108
Malaysia Malaysia 328,550 0% 66
Namibia Namibia 823,290 0% 33
New Caledonia New Caledonia 18,280 0% 151
Niger Niger 1,266,700 0% 20
Nigeria Nigeria 910,770 0% 30
Nicaragua Nicaragua 120,340 0% 99
Netherlands Netherlands 33,670 0% 134
Norway Norway 364,270 0% 63
Nepal Nepal 143,350 0% 93
Nauru Nauru 20 0% 206
New Zealand New Zealand 263,310 0% 75
Oman Oman 309,500 0% 69
Pakistan Pakistan 770,880 0% 35
Panama Panama 74,180 0% 116
Peru Peru 1,280,000 0% 19
Philippines Philippines 298,170 0% 72
Palau Palau 460 0% 186
Papua New Guinea Papua New Guinea 452,860 0% 54
Poland Poland 306,090 -0.00327% 70
Puerto Rico Puerto Rico 8,870 0% 164
North Korea North Korea 120,410 0% 98
Portugal Portugal 91,606 0% 109
Paraguay Paraguay 396,012 -0.324% 60
French Polynesia French Polynesia 3,471 0% 168
Qatar Qatar 11,490 0% 158
Romania Romania 230,080 0% 81
Russia Russia 16,376,870 0% 1
Rwanda Rwanda 24,670 0% 146
Saudi Arabia Saudi Arabia 2,149,690 0% 12
Sudan Sudan 1,868,000 0% 15
Senegal Senegal 192,530 0% 86
Singapore Singapore 718 0% 180
Solomon Islands Solomon Islands 27,990 0% 141
Sierra Leone Sierra Leone 72,180 0% 117
El Salvador El Salvador 20,720 0% 149
San Marino San Marino 60 0% 201
Somalia Somalia 627,340 0% 42
Serbia Serbia 84,090 0% 112
South Sudan South Sudan 631,930 0% 41
São Tomé & Príncipe São Tomé & Príncipe 960 0% 174
Suriname Suriname 160,508 0% 91
Slovakia Slovakia 48,080 0% 129
Slovenia Slovenia 20,136 0% 150
Sweden Sweden 407,280 0% 59
Eswatini Eswatini 17,200 0% 154
Sint Maarten Sint Maarten 34 0% 204
Seychelles Seychelles 460 0% 186
Syria Syria 185,180 +0.844% 88
Turks & Caicos Islands Turks & Caicos Islands 950 0% 175
Chad Chad 1,259,200 0% 21
Togo Togo 54,390 0% 125
Thailand Thailand 510,890 0% 50
Tajikistan Tajikistan 138,790 0% 94
Turkmenistan Turkmenistan 469,930 0% 53
Timor-Leste Timor-Leste 14,870 0% 155
Tonga Tonga 720 0% 179
Trinidad & Tobago Trinidad & Tobago 5,130 0% 166
Tunisia Tunisia 155,360 0% 92
Turkey Turkey 769,630 0% 36
Tuvalu Tuvalu 30 0% 205
Tanzania Tanzania 885,800 0% 31
Uganda Uganda 200,520 0% 84
Ukraine Ukraine 579,400 0% 45
Uruguay Uruguay 175,020 0% 90
United States United States 9,147,420 0% 3
Uzbekistan Uzbekistan 440,652 -0.000227% 56
St. Vincent & Grenadines St. Vincent & Grenadines 390 0% 190
Venezuela Venezuela 882,050 0% 32
British Virgin Islands British Virgin Islands 150 0% 200
U.S. Virgin Islands U.S. Virgin Islands 350 0% 191
Vietnam Vietnam 313,429 0% 68
Vanuatu Vanuatu 12,190 0% 157
Samoa Samoa 2,780 0% 169
Yemen Yemen 527,970 0% 49
South Africa South Africa 1,213,090 0% 24
Zambia Zambia 743,390 0% 38
Zimbabwe Zimbabwe 386,850 0% 61

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.LND.TOTL.K2'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.LND.TOTL.K2'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))