Intentional homicides, female (per 100,000 female)

Source: worldbank.org, 19.12.2024

Year: 2021

Flag Country Value Value change, % Rank
Albania Albania 0.84 +33.7% 47
United Arab Emirates United Arab Emirates 0.35 -29.6% 82
Argentina Argentina 1.35 -17.4% 39
Armenia Armenia 0.912 -12.2% 45
Antigua & Barbuda Antigua & Barbuda 10.3 +397% 1
Australia Australia 0.375 -34.4% 81
Austria Austria 0.883 +7.96% 46
Azerbaijan Azerbaijan 1.32 -12.9% 40
Belgium Belgium 0.187 -80.1% 87
Bulgaria Bulgaria 0.79 +9.13% 50
Bahrain Bahrain 0.18 88
Bahamas Bahamas 2.82 -45.7% 22
Bosnia & Herzegovina Bosnia & Herzegovina 0.421 +42.1% 76
Belize Belize 5.53 -1.35% 10
Bolivia Bolivia 2.91 +12.9% 21
Barbados Barbados 4.1 +99.7% 13
Botswana Botswana 7.63 -13.7% 4
Canada Canada 1.03 +9.91% 44
Switzerland Switzerland 0.571 -7.93% 65
Chile Chile 0.672 -41.1% 55
Colombia Colombia 4.1 +8.34% 14
Costa Rica Costa Rica 2.17 -10.3% 31
Cyprus Cyprus 1.13 +39.2% 41
Czechia Czechia 0.506 -30.7% 73
Germany Germany 0.798 -5.69% 49
Dominica Dominica 5.5 +98.6% 11
Denmark Denmark 0.51 -12.2% 72
Dominican Republic Dominican Republic 2.57 +9.67% 24
Algeria Algeria 0.738 +29% 52
Ecuador Ecuador 2.55 +35.8% 26
Egypt Egypt 0.548 +76.4% 68
Spain Spain 0.401 -18.7% 78
Estonia Estonia 0.573 -59.9% 64
France France 0.684 +17.4% 54
Ghana Ghana 0.577 +23.2% 63
Greece Greece 0.619 +74.8% 59
Grenada Grenada 1.61 -66.9% 37
Guatemala Guatemala 6.13 +19.1% 9
Guyana Guyana 2.19 -77.1% 30
Hong Kong SAR China Hong Kong SAR China 0.272 +22.2% 85
Honduras Honduras 6.49 -0.95% 7
Croatia Croatia 0.672 -25.6% 56
Haiti Haiti 1.87 +22.6% 34
Hungary Hungary 0.514 -33% 71
India India 2.5 +2.97% 27
Ireland Ireland 0.278 +15.7% 84
Iceland Iceland 0.554 -75.3% 67
Israel Israel 0.605 +15.6% 60
Italy Italy 0.392 +3.08% 80
Jamaica Jamaica 9.34 +17.4% 2
Jordan Jordan 0.577 +21.5% 62
Japan Japan 0.209 -28% 86
Kenya Kenya 2.64 +54.2% 23
St. Kitts & Nevis St. Kitts & Nevis 4.07 15
South Korea South Korea 0.493 -7.25% 74
St. Lucia St. Lucia 8.82 +59.5% 3
Liechtenstein Liechtenstein 5.08 -0.775% 12
Lithuania Lithuania 1.49 -23.1% 38
Latvia Latvia 3.58 -13.1% 17
Macao SAR China Macao SAR China 0.823 +47.7% 48
Morocco Morocco 0.538 +16.6% 70
Mexico Mexico 6.17 +0.454% 8
Malta Malta 0 -100% 91
Myanmar (Burma) Myanmar (Burma) 7.29 +652% 5
Montenegro Montenegro 0.621 -33.2% 58
Mongolia Mongolia 2.55 +5.71% 25
Mauritius Mauritius 1.82 +8.92% 36
Namibia Namibia 6.8 +1.78% 6
Nicaragua Nicaragua 3.11 +98.2% 19
Netherlands Netherlands 0.42 -16.2% 77
Norway Norway 0.598 +6.24% 61
Oman Oman 0.171 -26.5% 89
Panama Panama 2.02 -5.63% 32
Poland Poland 0.399 -11% 79
Paraguay Paraguay 1.92 -8.46% 33
Palestinian Territories Palestinian Territories 0.35 -37.1% 83
Qatar Qatar 0.545 +106% 69
Romania Romania 0.761 -20.4% 51
Russia Russia 3.3 -6.74% 18
Singapore Singapore 0.0706 -60.2% 90
El Salvador El Salvador 4.02 +1.15% 16
Serbia Serbia 0.711 +23.7% 53
Suriname Suriname 2.28 -30.7% 28
Slovakia Slovakia 0.646 -35.6% 57
Slovenia Slovenia 0.569 +0.0386% 66
Sweden Sweden 0.462 -4.83% 75
Turkey Turkey 1.03 +13% 43
Uruguay Uruguay 2.26 +5.39% 29
United States United States 2.92 +13.9% 20
Uzbekistan Uzbekistan 1.05 +9.39% 42
St. Vincent & Grenadines St. Vincent & Grenadines 0 -100% 91
Zimbabwe Zimbabwe 1.87 +6.1% 35

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'VC.IHR.PSRC.FE.P5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'VC.IHR.PSRC.FE.P5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))