Industry (including construction), value added (% of GDP)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 44.2 -2.4% 13
Albania Albania 22.4 -2.66% 96
Andorra Andorra 12.8 +2.61% 140
Argentina Argentina 24 -4.25% 81
Armenia Armenia 23.2 -0.678% 86
Australia Australia 26 -6.09% 63
Austria Austria 23.1 -8.67% 88
Azerbaijan Azerbaijan 42.6 -7.04% 14
Belgium Belgium 17.6 -5.17% 122
Benin Benin 17.4 +0.472% 124
Burkina Faso Burkina Faso 29.7 +1.4% 45
Bangladesh Bangladesh 34.1 -1.44% 27
Bulgaria Bulgaria 22.5 -0.765% 94
Bahamas Bahamas 9.63 -1.55% 149
Bosnia & Herzegovina Bosnia & Herzegovina 22 -7.1% 99
Belarus Belarus 30.7 -3.11% 40
Brazil Brazil 21.3 -3.68% 103
Brunei Brunei 61.7 -0.0377% 3
Botswana Botswana 29.4 -13.8% 47
Central African Republic Central African Republic 17.8 -14% 121
Switzerland Switzerland 24.7 +0.218% 75
Chile Chile 30.1 +4.45% 43
China China 36.5 -0.807% 25
Côte d’Ivoire Côte d’Ivoire 22.1 -3.51% 98
Cameroon Cameroon 25.6 +0.369% 66
Congo - Kinshasa Congo - Kinshasa 46.6 +0.362% 10
Congo - Brazzaville Congo - Brazzaville 40.1 -11.3% 16
Colombia Colombia 23.1 -6.56% 87
Comoros Comoros 9.56 +0.308% 150
Cape Verde Cape Verde 10.5 -3.14% 146
Costa Rica Costa Rica 19.7 -3.68% 111
Cyprus Cyprus 10.3 -1.65% 147
Czechia Czechia 30.2 -0.616% 42
Germany Germany 25.8 -5.32% 65
Djibouti Djibouti 15.4 +7.47% 133
Dominica Dominica 13.9 +8.83% 139
Denmark Denmark 24 +2.15% 80
Dominican Republic Dominican Republic 28.7 -1.99% 52
Ecuador Ecuador 26.5 -3.85% 58
Egypt Egypt 32.6 -0.525% 29
Spain Spain 19.5 -3.05% 112
Estonia Estonia 20.5 -5.78% 106
Ethiopia Ethiopia 25.4 +3.84% 69
Finland Finland 22.1 -5.76% 97
Fiji Fiji 14.1 -0.369% 138
France France 17.5 -4.99% 123
Gabon Gabon 50.9 -1.69% 8
United Kingdom United Kingdom 16.7 -4.29% 129
Georgia Georgia 19.1 +1.03% 114
Ghana Ghana 28.8 -2.24% 50
Guinea Guinea 25.3 -1.73% 70
Gambia Gambia 14.7 -11.8% 137
Guinea-Bissau Guinea-Bissau 16.6 +5.32% 130
Equatorial Guinea Equatorial Guinea 45.8 -1.62% 11
Greece Greece 15.4 +0.499% 135
Grenada Grenada 14.8 -1.01% 136
Guatemala Guatemala 21.7 -2.56% 100
Guyana Guyana 74.3 +7.21% 1
Honduras Honduras 26.1 +1.17% 62
Croatia Croatia 19.8 -5.57% 110
Haiti Haiti 33.4 +4.3% 28
Hungary Hungary 23.9 -6.46% 82
Indonesia Indonesia 39.3 -2.23% 17
India India 24.5 -3.31% 77
Ireland Ireland 30.8 -7.07% 38
Iran Iran 36.4 +0.443% 26
Iraq Iraq 51.6 -4.43% 7
Iceland Iceland 19.4 -3.58% 113
Israel Israel 17.3 -6.25% 125
Italy Italy 21.7 -5.89% 101
Jamaica Jamaica 18.3 -1.95% 117
Jordan Jordan 25.1 +1.37% 71
Kazakhstan Kazakhstan 31.4 -3.14% 36
Kenya Kenya 16.1 -4.63% 131
Kyrgyzstan Kyrgyzstan 24.7 +4.91% 74
Cambodia Cambodia 41.8 +3.04% 15
St. Kitts & Nevis St. Kitts & Nevis 21.1 -1.42% 104
Kuwait Kuwait 57.1 -5.25% 5
Laos Laos 29 -4.87% 48
Liberia Liberia 23.3 -0.275% 84
Libya Libya 68.3 -11.7% 2
St. Lucia St. Lucia 9.75 +0.708% 148
Sri Lanka Sri Lanka 25.5 -0.985% 67
Lesotho Lesotho 31 +7.99% 37
Lithuania Lithuania 23.4 -3.48% 83
Luxembourg Luxembourg 9.01 -11.4% 153
Latvia Latvia 19.9 -8.41% 109
Morocco Morocco 24.1 -1.7% 79
Moldova Moldova 16.8 -5.13% 127
Madagascar Madagascar 22.8 -0.564% 90
Maldives Maldives 9.02 -6.91% 152
Mexico Mexico 31.6 -2.61% 35
North Macedonia North Macedonia 22.7 -2.55% 92
Mali Mali 22.7 -7.1% 91
Malta Malta 11.4 -3.22% 143
Myanmar (Burma) Myanmar (Burma) 37.8 +0.584% 19
Montenegro Montenegro 11.6 -6.63% 142
Mongolia Mongolia 38.1 -3.71% 18
Mozambique Mozambique 24.6 +15.5% 76
Mauritania Mauritania 30.6 -0.113% 41
Mauritius Mauritius 17.8 +0.0726% 120
Malawi Malawi 16 +4.21% 132
Malaysia Malaysia 37.1 -1.58% 23
Namibia Namibia 28.9 -4.39% 49
Niger Niger 17.8 -0.99% 119
Nigeria Nigeria 29.6 -9.01% 46
Nicaragua Nicaragua 27.6 +1.31% 56
Netherlands Netherlands 17.9 -4.71% 118
Norway Norway 37 -5.17% 24
Nepal Nepal 11.4 -4.57% 144
Oman Oman 54.2 -1.98% 6
Pakistan Pakistan 20 -3.05% 107
Panama Panama 26.3 -5.59% 60
Peru Peru 32.2 -5.09% 31
Philippines Philippines 27.7 -1.79% 55
Papua New Guinea Papua New Guinea 37.2 +2.44% 22
Poland Poland 26.4 -10.3% 59
Puerto Rico Puerto Rico 48 +1.43% 9
Portugal Portugal 18.4 +1.08% 116
Paraguay Paraguay 32.5 -1.26% 30
Qatar Qatar 58.5 -3.11% 4
Romania Romania 25 -6.22% 72
Russia Russia 30.7 +1.03% 39
Rwanda Rwanda 21 +1.27% 105
Saudi Arabia Saudi Arabia 44.8 -5.82% 12
Sudan Sudan 23 -18.7% 89
Senegal Senegal 25.4 +11.2% 68
Singapore Singapore 21.4 -3.47% 102
Sierra Leone Sierra Leone 27.3 +4.87% 57
El Salvador El Salvador 22.4 -3.22% 95
Serbia Serbia 23.3 -2.99% 85
São Tomé & Príncipe São Tomé & Príncipe 2.91 +3.26% 154
Slovakia Slovakia 28.5 -2.12% 54
Slovenia Slovenia 28.8 -3.16% 51
Sweden Sweden 22.6 -2.88% 93
Seychelles Seychelles 12.3 -6.58% 141
Turks & Caicos Islands Turks & Caicos Islands 9.34 -1.53% 151
Chad Chad 29.7 -1.91% 44
Togo Togo 20 -0.699% 108
Thailand Thailand 32.1 -2.58% 32
Turkey Turkey 25.9 -8.58% 64
Tanzania Tanzania 28.7 +2.37% 53
Uganda Uganda 24.9 -3.47% 73
Ukraine Ukraine 19 -0.323% 115
Uruguay Uruguay 16.8 +0.0312% 128
United States United States 17.3 -2.37% 126
Uzbekistan Uzbekistan 31.8 +2.53% 33
St. Vincent & Grenadines St. Vincent & Grenadines 15.4 +4.57% 134
Vietnam Vietnam 37.6 +0.159% 20
Samoa Samoa 10.9 +0.343% 145
Kosovo Kosovo 26.2 -0.561% 61
South Africa South Africa 24.4 -0.84% 78
Zambia Zambia 37.5 +6.74% 21
Zimbabwe Zimbabwe 31.8 +20.9% 34

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.IND.TOTL.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.IND.TOTL.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))