Industrial design applications, resident, by count

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Albania Albania 57 +50% 75
United Arab Emirates United Arab Emirates 103 +98.1% 64
Argentina Argentina 1,479 +19.5% 24
Armenia Armenia 78 +160% 70
Antigua & Barbuda Antigua & Barbuda 1 0% 100
Australia Australia 2,584 -3% 20
Austria Austria 232 -27% 54
Azerbaijan Azerbaijan 63 +96.9% 73
Bangladesh Bangladesh 1,338 +15.1% 26
Bulgaria Bulgaria 388 -27.3% 47
Bahrain Bahrain 10 -23.1% 94
Bosnia & Herzegovina Bosnia & Herzegovina 52 -65.1% 76
Belarus Belarus 273 +78.4% 52
Belize Belize 5 0% 97
Bolivia Bolivia 23 +35.3% 87
Brazil Brazil 4,520 +6.15% 14
Bhutan Bhutan 3 -66.7% 99
Botswana Botswana 18 +50% 89
Canada Canada 715 -3.12% 35
Switzerland Switzerland 3,403 +16.7% 17
Chile Chile 42 -45.5% 79
China China 785,857 +4.46% 1
Colombia Colombia 486 +33.2% 41
Costa Rica Costa Rica 9 0% 95
Cuba Cuba 14 -26.3% 92
Cyprus Cyprus 20 -75.6% 88
Czechia Czechia 522 -14.7% 40
Germany Germany 33,448 -6.48% 4
Denmark Denmark 135 -4.93% 58
Dominican Republic Dominican Republic 4 0% 98
Algeria Algeria 879 -27.2% 30
Ecuador Ecuador 78 +47.2% 70
Egypt Egypt 2,252 +28% 22
Spain Spain 12,010 -0.505% 12
Estonia Estonia 36 -10% 80
Finland Finland 150 +6.38% 56
France France 30,120 +1.85% 5
United Kingdom United Kingdom 28,299 +32.5% 6
Georgia Georgia 103 -29% 64
Greece Greece 721 -9.99% 34
Guatemala Guatemala 35 +483% 81
Guyana Guyana 1 100
Hong Kong SAR China Hong Kong SAR China 946 -13.1% 29
Croatia Croatia 285 +14% 51
Hungary Hungary 868 +68.5% 31
Indonesia Indonesia 2,959 +28.7% 19
India India 17,497 +95.2% 10
Ireland Ireland 95 -59.4% 66
Iran Iran 13,903 -6.67% 11
Iceland Iceland 7 -12.5% 96
Israel Israel 626 -16.1% 39
Italy Italy 26,386 +5.3% 7
Jamaica Jamaica 94 -55.5% 67
Jordan Jordan 114 +54.1% 62
Japan Japan 22,051 -1.52% 8
Kazakhstan Kazakhstan 134 +61.4% 59
Kenya Kenya 126 -42.7% 61
Kyrgyzstan Kyrgyzstan 7 -61.1% 96
South Korea South Korea 61,233 -4.33% 2
Kuwait Kuwait 47 -26.6% 77
Liechtenstein Liechtenstein 25 -59.7% 85
Sri Lanka Sri Lanka 112 -55% 63
Lithuania Lithuania 132 +24.5% 60
Latvia Latvia 84 -40.4% 69
Macao SAR China Macao SAR China 29 -14.7% 82
Morocco Morocco 3,208 +12.1% 18
Monaco Monaco 28 +300% 83
Moldova Moldova 654 +140% 38
Madagascar Madagascar 328 +58.5% 49
Mexico Mexico 1,225 +16.7% 27
North Macedonia North Macedonia 67 +67.5% 72
Malta Malta 17 -51.4% 90
Mongolia Mongolia 1,391 +125% 25
Mozambique Mozambique 35 -12.5% 81
Mauritius Mauritius 24 -71.4% 86
Malaysia Malaysia 468 -18.6% 42
Norway Norway 452 -5.83% 44
New Zealand New Zealand 320 -9.09% 50
Oman Oman 17 -15% 90
Pakistan Pakistan 463 +26.5% 43
Panama Panama 5 +66.7% 97
Peru Peru 97 +4.3% 65
Philippines Philippines 682 +2.56% 37
Poland Poland 2,489 +28.4% 21
Portugal Portugal 1,008 -41.4% 28
Paraguay Paraguay 7 -30% 96
Romania Romania 378 -30.4% 48
Russia Russia 6,128 +27.2% 13
Rwanda Rwanda 11 +83.3% 93
Saudi Arabia Saudi Arabia 853 +58.8% 32
Singapore Singapore 683 +73.4% 36
Sierra Leone Sierra Leone 4 -20% 98
El Salvador El Salvador 16 +77.8% 91
Serbia Serbia 137 -16% 57
Slovakia Slovakia 262 -6.43% 53
Slovenia Slovenia 26 -21.2% 84
Sweden Sweden 390 +35.9% 46
Syria Syria 406 +23.8% 45
Thailand Thailand 4,323 +1.84% 15
Trinidad & Tobago Trinidad & Tobago 58 +287% 74
Turkey Turkey 59,353 +41.1% 3
Uganda Uganda 90 +105% 68
Ukraine Ukraine 3,526 +9.23% 16
United States United States 21,913 +1.05% 9
Uzbekistan Uzbekistan 231 +55% 55
Vietnam Vietnam 2,107 -7.55% 23
Vanuatu Vanuatu 4 98
Yemen Yemen 77 +32.8% 71
South Africa South Africa 728 -24.9% 33
Zambia Zambia 46 -62.9% 78
Zimbabwe Zimbabwe 14 92

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'IP.IDS.RSCT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'IP.IDS.RSCT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))